问题
I am trying to infer tinyYOLO-V2
with INT8
weights and activation. I can convert the weights to INT8 with TFliteConverter. For INT8
activation, I have to give representative dataset to estimate the scaling factor. My method of creating such dataset seems wrong.
What is the correct procedure ?
def rep_data_gen():
a = []
for i in range(160):
inst = anns[i]
file_name = inst['filename']
img = cv2.imread(img_dir + file_name)
img = cv2.resize(img, (NORM_H, NORM_W))
img = img / 255.0
img = img.astype('float32')
a.append(img)
a = np.array(a)
print(a.shape) # a is np array of 160 3D images
img = tf.data.Dataset.from_tensor_slices(a).batch(1)
for i in img.take(BATCH_SIZE):
print(i)
yield [i]
# https://www.tensorflow.org/lite/performance/post_training_quantization
converter = tf.lite.TFLiteConverter.from_keras_model_file("./yolo.h5")
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = [tf.int8]
converter.inference_output_type = [tf.int8]
converter.representative_dataset=rep_data_gen
tflite_quant_model = converter.convert()
ValueError: Cannot set tensor: Got tensor of type STRING but expected type FLOAT32 for input 27, name: input_1
回答1:
I used your code for reading in a dataset and found the error:
img = img.astype('float32') should be
img = img.astype(np.float32)
Hope this helps
来源:https://stackoverflow.com/questions/57877959/what-is-the-correct-way-to-create-representative-dataset-for-tfliteconverter