Spark官网下载Spark
Spark下载,版本随意,下载后解压放入bigdata下(目录可以更改)
下载Windows下Hadoop所需文件winutils.exe
同学们自己网上找找吧,这里就不上传了,其实该文件可有可无,报错也不影响Spark运行,强迫症可以下载,本人就有强迫症~~,文件下载后放入bigdata\hadoop\bin目录下。
不用创建环境变量,再Java最开始处定义系统变量即可,如下:
System.setProperty("hadoop.home.dir", HADOOP_HOME);
创建Java Maven项目java-spark-sql-excel
建立相关目录层次如下:
父级目录(项目所在目录)
- java-spark-sql-excel
- bigdata
- spark
- hadoop
- bin
- winutils.exe
编码
初始化SparkSession
static{
System.setProperty("hadoop.home.dir", HADOOP_HOME);
spark = SparkSession.builder()
.appName("test")
.master("local[*]")
.config("spark.sql.warehouse.dir",SPARK_HOME)
.config("spark.sql.parquet.binaryAsString", "true")
.getOrCreate();
}
读取excel
public static void readExcel(String filePath,String tableName) throws IOException{
DecimalFormat format = new DecimalFormat();
format.applyPattern("#");
//创建文件(可以接收上传的文件,springmvc使用CommonsMultipartFile,jersey可以使用org.glassfish.jersey.media.multipart.FormDataParam(参照本人文件上传博客))
File file = new File(filePath);
//创建文件流
InputStream inputStream = new FileInputStream(file);
//创建流的缓冲区
BufferedInputStream bufferedInputStream = new BufferedInputStream(inputStream);
//定义Excel workbook引用
Workbook workbook =null;
//.xlsx格式的文件使用XSSFWorkbook子类,xls格式的文件使用HSSFWorkbook
if(file.getName().contains("xlsx")) workbook = new XSSFWorkbook(bufferedInputStream);
if(file.getName().contains("xls")&&!file.getName().contains("xlsx")) workbook = new HSSFWorkbook(bufferedInputStream);
System.out.println(file.getName());
//获取Sheets迭代器
Iterator<Sheet> dataTypeSheets= workbook.sheetIterator();
while(dataTypeSheets.hasNext()){
//每一个sheet都是一个表,为每个sheet
ArrayList<String> schemaList = new ArrayList<String>();
// dataList数据集
ArrayList<org.apache.spark.sql.Row> dataList = new ArrayList<org.apache.spark.sql.Row>();
//字段
List<StructField> fields = new ArrayList<>();
//获取当前sheet
Sheet dataTypeSheet = dataTypeSheets.next();
//获取第一行作为字段
Iterator<Row> iterator = dataTypeSheet.iterator();
//没有下一个sheet跳过
if(!iterator.hasNext()) continue;
//获取第一行用于建立表结构
Iterator<Cell> firstRowCellIterator = iterator.next().iterator();
while(firstRowCellIterator.hasNext()){
//获取第一行每一列作为字段
Cell currentCell = firstRowCellIterator.next();
//字符串
if(currentCell.getCellTypeEnum() == CellType.STRING) schemaList.add(currentCell.getStringCellValue().trim());
//数值
if(currentCell.getCellTypeEnum() == CellType.NUMERIC) schemaList.add((currentCell.getNumericCellValue()+"").trim());
}
//创建StructField(spark中的字段对象,需要提供字段名,字段类型,第三个参数true表示列可以为空)并填充List<StructField>
for (String fieldName : schemaList) {
StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);
fields.add(field);
}
//根据List<StructField>创建spark表结构org.apache.spark.sql.types.StructType
StructType schema = DataTypes.createStructType(fields);
//字段数len
int len = schemaList.size();
//获取当前sheet数据行数
int rowEnd = dataTypeSheet.getLastRowNum();
//遍历当前sheet所有行
for (int rowNum = 1; rowNum <= rowEnd; rowNum++) {
//一行数据做成一个List
ArrayList<String> rowDataList = new ArrayList<String>();
//获取一行数据
Row r = dataTypeSheet.getRow(rowNum);
if(r!=null){
//根据字段数遍历当前行的单元格
for (int cn = 0; cn < len; cn++) {
Cell c = r.getCell(cn, Row.MissingCellPolicy.RETURN_BLANK_AS_NULL);
if (c == null) rowDataList.add("0");//空值简单补零
if (c != null&&c.getCellTypeEnum() == CellType.STRING) rowDataList.add(c.getStringCellValue().trim());//字符串
if (c != null&&c.getCellTypeEnum() == CellType.NUMERIC){
double value = c.getNumericCellValue();
if (p.matcher(value+"").matches()) rowDataList.add(format.format(value));//不保留小数点
if (!p.matcher(value+"").matches()) rowDataList.add(value+"");//保留小数点
}
}
}
//dataList数据集添加一行
dataList.add(RowFactory.create(rowDataList.toArray()));
}
//根据数据和表结构创建临时表
spark.createDataFrame(dataList, schema).createOrReplaceTempView(tableName+dataTypeSheet.getSheetName());
}
}
在项目目录下创建测试文件
第一个Sheet:
第二个Sheet:
第三个Sheet:
测试
public static void main(String[] args) throws Exception {
//需要查询的excel路径
String xlsxPath = "test2.xlsx";
String xlsPath = "test.xls";
//定义表名
String tableName1="test_table1";
String tableName2="test_table2";
//读取excel表名为tableNameN+Sheet的名称
readExcel(xlsxPath,tableName2);
spark.sql("select * from "+tableName2+"Sheet1").show();
readExcel(xlsPath,tableName1);
spark.sql("select * from "+tableName1+"Sheet1").show();
spark.sql("select * from "+tableName1+"Sheet2").show();
spark.sql("select * from "+tableName1+"Sheet3").show();
}
运行结果
相关依赖
<dependencies>
<dependency>
<groupId>org.spark-project.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>1.2.1.spark2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi</artifactId>
<version>3.17</version>
</dependency>
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi-ooxml</artifactId>
<version>3.17</version>
</dependency>
</dependencies>
来源:oschina
链接:https://my.oschina.net/u/4268252/blog/3670979