问题
I have a custom Keras layer that I want to return specific output from specific inputs. I don't want it to be trainable.
The layer should do the following
if input = [1,0] then output = 1
if input = [0,1] then output = 0
Instead, it always outputs -1, the value I set if there's problem.
I think the line that is not behaving as I expect it would is:
if(test_mask_1_result_count == 2)
Here's the custom layer:
class my_custom_layer(layers.Layer):
def __init__(self, **kwargs):
super(my_custom_layer, self).__init__(**kwargs)
def call(self, inputs,training=None):
def encode():
# set up the test mask:
test_mask_1 = np.array([0,1],dtype=np.int32)
k_test_mask_1 = backend.variable(value=test_mask_1)
# test if the input is equal to the test mask
test_mask_1_result = backend.equal(inputs,k_test_mask_1)
# add up all the trues
test_mask_1_result_count = tf.reduce_sum(tf.cast(test_mask_1_result, tf.int32))
# return if we've found the right mask
if(test_mask_1_result_count == 2):
res = np.array([0]).reshape((1,)) #top left
k_res = backend.variable(value=res)
return k_res
# set up to test the second mask
test_mask_2 = np.array([1,0],dtype=np.int32)
k_test_mask_2 = backend.variable(value=test_mask_2)
# test if the input is equal to the test mask
test_mask_2_result = backend.equal(inputs,k_test_mask_2)
# add up all the trues
test_mask_2_result_count = tf.reduce_sum(tf.cast(test_mask_2_result, tf.int32))
# return if we've found the right mask
if(test_mask_2_result_count == 2):
res = np.array([1]).reshape((1,)) #top left
k_res = backend.variable(value=res)
return k_res
# if we've got here we're in trouble:
res = np.array([-1]).reshape((1,)) #top left
k_res = backend.variable(value=res)
return k_res
return encode()
def compute_output_shape(self, input_shape):
return (input_shape[0],1)
Why doesn't the if
ever trigger?
I also produced a MWE using keras outside of a network. This seems to work as intended:
mask_1 = np.array([1,0],dtype=np.int32)
k_mask_1 = backend.variable(value=mask_1)
input_1 = np.array([1,0],dtype=np.int32)
k_input_1 = backend.variable(value=input_1)
mask_eq = backend.equal(k_input_1,k_mask_1)
mask_eq_sum = tf.reduce_sum(tf.cast(mask_eq, tf.int32))
# keras backend
sess = backend.get_session()
print(sess.run(mask_eq_sum))
Outputs 2
I suspect there is something fundamental that I don't understand.
回答1:
I'm not sure what the problem is with your code, but your layer seems to be much more complicated than necessary. For instance,
my_custom_layer = layers.Lambda(lambda x: x[0])
should meet your specs. If you want it to be more robust, you could use
my_custom_layer = layers.Lambda(lambda x: 1 if x == [1,0] else 0 if x == [0,1] else -1)
or
def mask_func(in_t):
if in_t == [1,0]:
return 1
elif in_t == [0,1]:
return 0
else:
return -1
my_custom_layer = layers.Lambda(mask_func)
instead. Assuming you're using TF2.0
, custom layers are pretty lenient. Obviously, if you're using this to process batches, you'll need to modify it a little bit, but hopefully you get the point.
来源:https://stackoverflow.com/questions/60555305/if-then-inside-custom-non-trainable-keras-layer