问题
I am trying to get rid of an inefficient set of nested for loops in python. I have an array that I will call S(fk,fq) that needs to be mapped onto a different array that I will call Z(fi,αj). The arguments are all sampling frequencies. Both arrays have the same dimensions, which are user-selected. The mapping rule is fairly straightforward:
fi = 0.5 · (fk - fq)
αj = fk + fq
Currently I'm performing this via a series of nested for loops:
import numpy as np
nrows = 64
ncolumns = 16384
fk = np.fft.fftfreq(nrows)
fq = np.fft.fftfreq(ncolumns)
# using random numbers here to simplify the example
# in practice S is the result of several FFTs and complex multiplications
S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
fi = []
alphaj = []
Z = []
for k in range(-nrows//2,nrows//2):
for q in range(-ncolumns//2,ncolumns//2):
fi.append(0.5*(fk[k] - fq[q]))
alphaj.append(fk[k] + fq[q])
Z.append(S[k,q])
Obviously this is highly inefficient -- with this approach the mapping operation takes longer than the actual calculation of S (which in practice is the result of several FFT's and complex multiplications). I would like to find a way to vectorize this, but I'm having trouble coming up with the right approach. Any suggestions would be greatly appreciated.
Note: This is related to another question about how to store the results. Since this is about optimization I thought it would be better to create two separate questions.
回答1:
This doesn’t use the negative indexing of your original function but by returning arrays you can use normal indexing to map values
def weirdMath():
nrows = 64
ncolumns = 16384
fk = np.fft.fftfreq(nrows)
fq = np.fft.fftfreq(ncolumns)
S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
fi = .5*fk[:,np.newaxis] - fq
alphaj = fk[:,np.newaxis] + fq
return fi, alphaj, S
>>> f1,a1=weirdMath()
>>> f1.size
1048576
>>> f1[32,:10]
array([ 0.25 , 0.24993896, 0.24987793, 0.24981689, 0.24975586,
0.24969482, 0.24963379, 0.24957275, 0.24951172, 0.24945068])
Proof with rolling of axes added to match order of output in original code. Note: S was modified to np.arange() so that value comparison between functions could be directly matched:
def origCode():
nrows = 64
ncolumns = 16384
fk = np.fft.fftfreq(nrows)
fq = np.fft.fftfreq(ncolumns)
# using random numbers here to simplify the example
# in practice S is the result of several FFTs and complex multiplications
#S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
S = np.arange(nrows*ncolumns).reshape(nrows, ncolumns)
fi = []
alphaj = []
Z = []
for k in range(-nrows//2,nrows//2):
for q in range(-ncolumns//2,ncolumns//2):
fi.append(0.5*fk[k] - fq[q])
alphaj.append(fk[k] + fq[q])
Z.append(S[k,q])
return fi, alphaj,Z
def weirdMathWithRoll():
nrows = 64
ncolumns = 16384
rowRollAdj = nrows%2
colRollAdj = ncolumns%2
fk = np.roll(np.fft.fftfreq(nrows), shift=(-nrows//2) + rowRollAdj, axis=0)
fq = np.roll(np.fft.fftfreq(ncolumns), (-ncolumns//2) + colRollAdj)
S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
S = np.arange(nrows*ncolumns).reshape(nrows, ncolumns)
s2 = np.roll(S,ncolumns//2 + colRollAdj, axis=1)
s3 = np.roll(s2,nrows//2 + rowRollAdj, axis=0)
fi = .5*fk[:,np.newaxis] - fq
alphaj = fk[:,np.newaxis] + fq
return fi, alphaj, s3
def testMath():
f,a,z = origCode()
f1,a1,s1 = weirdMathWithRoll()
fMatch = f==f1.flatten()
aMatch = a==a1.flatten()
sMatch = z==s1.flatten()
return (np.all(fMatch), np.all(aMatch), np.all(sMatch))
Output of proof:
>>> testMath()
(True, True, True)
Performance improvement:
>>> timeit.timeit(origCode, number = 1)
0.984715332997439
>>> timeit.timeit(weirdMathWithRoll, number = 1)
0.051891374998376705
回答2:
Does indexing with negative k values do what you want? In Python/numpy fk[-1] means last, fk[-2] means second to the last, etc.
In [90]: S = np.arange(1,11)
In [91]: Z = []
In [92]: for k in range(-5,5):
...: Z.append(S[k])
...:
In [94]: S
Out[94]: array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
In [95]: Z
Out[95]: [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]
Or with slicing:
In [96]: np.concatenate([S[5:],S[:5]])
Out[96]: array([ 6, 7, 8, 9, 10, 1, 2, 3, 4, 5])
来源:https://stackoverflow.com/questions/61104413/optimizing-an-array-mapping-operation-in-python