Spark specify multiple column conditions for dataframe join

蓝咒 提交于 2019-11-27 17:20:21
rchukh

There is a Spark column/expression API join for such case:

Leaddetails.join(
    Utm_Master, 
    Leaddetails("LeadSource") <=> Utm_Master("LeadSource")
        && Leaddetails("Utm_Source") <=> Utm_Master("Utm_Source")
        && Leaddetails("Utm_Medium") <=> Utm_Master("Utm_Medium")
        && Leaddetails("Utm_Campaign") <=> Utm_Master("Utm_Campaign"),
    "left"
)

The <=> operator in the example means "Equality test that is safe for null values".

The main difference with simple Equality test (===) is that the first one is safe to use in case one of the columns may have null values.

As of Spark version 1.5.0 (which is currently unreleased), you can join on multiple DataFrame columns. Refer to SPARK-7990: Add methods to facilitate equi-join on multiple join keys.

Python

Leads.join(
    Utm_Master, 
    ["LeadSource","Utm_Source","Utm_Medium","Utm_Campaign"],
    "left_outer"
)

Scala

The question asked for a Scala answer, but I don't use Scala. Here is my best guess....

Leads.join(
    Utm_Master,
    Seq("LeadSource","Utm_Source","Utm_Medium","Utm_Campaign"),
    "left_outer"
)
zero323

One thing you can do is to use raw SQL:

case class Bar(x1: Int, y1: Int, z1: Int, v1: String)
case class Foo(x2: Int, y2: Int, z2: Int, v2: String)

val bar = sqlContext.createDataFrame(sc.parallelize(
    Bar(1, 1, 2, "bar") :: Bar(2, 3, 2, "bar") ::
    Bar(3, 1, 2, "bar") :: Nil))

val foo = sqlContext.createDataFrame(sc.parallelize(
    Foo(1, 1, 2, "foo") :: Foo(2, 1, 2, "foo") ::
    Foo(3, 1, 2, "foo") :: Foo(4, 4, 4, "foo") :: Nil))

foo.registerTempTable("foo")
bar.registerTempTable("bar")

sqlContext.sql(
    "SELECT * FROM foo LEFT JOIN bar ON x1 = x2 AND y1 = y2 AND z1 = z2")

In Pyspark you can simply specify each condition separately:

val Lead_all = Leads.join(Utm_Master,  
    (Leaddetails.LeadSource == Utm_Master.LeadSource) &
    (Leaddetails.Utm_Source == Utm_Master.Utm_Source) &
    (Leaddetails.Utm_Medium == Utm_Master.Utm_Medium) &
    (Leaddetails.Utm_Campaign == Utm_Master.Utm_Campaign))

Just be sure to use operators and parenthesis correctly.

Scala:

Leaddetails.join(
    Utm_Master, 
    Leaddetails("LeadSource") <=> Utm_Master("LeadSource")
        && Leaddetails("Utm_Source") <=> Utm_Master("Utm_Source")
        && Leaddetails("Utm_Medium") <=> Utm_Master("Utm_Medium")
        && Leaddetails("Utm_Campaign") <=> Utm_Master("Utm_Campaign"),
    "left"
)

To make it case insensitive,

import org.apache.spark.sql.functions.{lower, upper}

then just use lower(value) in the condition of the join method.

Eg: dataFrame.filter(lower(dataFrame.col("vendor")).equalTo("fortinet"))

The === options give me duplicated columns. So I use Seq instead.

val Lead_all = Leads.join(Utm_Master,
    Seq("Utm_Source","Utm_Medium","Utm_Campaign"),"left")

Of course, this only works when the names of the joining columns are the same.

Spark SQL supports join on tuple of columns when in parentheses, like

... WHERE (list_of_columns1) = (list_of_columns2)

which is a way shorter than specifying equal expressions (=) for each pair of columns combined by a set of "AND"s.

For example:

SELECT a,b,c
FROM    tab1 t1
WHERE 
   NOT EXISTS
   (    SELECT 1
        FROM    t1_except_t2_df e
        WHERE (t1.a, t1.b, t1.c) = (e.a, e.b, e.c)
   )

instead of

SELECT a,b,c
FROM    tab1 t1
WHERE 
   NOT EXISTS
   (    SELECT 1
        FROM    t1_except_t2_df e
        WHERE t1.a=e.a AND t1.b=e.b AND t1.c=e.c
   )

which is less readable too especially when list of columns is big and you want to deal with NULLs easily.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!