题面
分析
这道题非常妙啊
对于可保留区间[l, r]
枚举右端点r
考虑l的取值范围有两重约数
记颜色i出现的最右侧位置是\(max_i\) 最左侧位置是\(min_i\)
r前最后一次出现的位置是pre[i]
1.若max[i] > r 则 l > pre[i]
2.若max[i] <= r 则 l 不能取(min[i], max[i] ]
限制一维护一下单调栈就好啦 限制二线段树维护一下
#include <cstdio> #include <algorithm> #include <cmath> #include <cstring> using namespace std; const int N = 3e5 + 5; const int inf = 0x3f3f3f3f; int n, a[N], mx[N], mn[N]; long long ans; int stk[N], top; struct Seg{ int w[N << 2]; bool flag[N << 2]; void update(int rt){ w[rt] = w[rt << 1] + w[rt << 1 | 1]; } void pushdown(int rt, int l, int r){ if(!flag[rt]) return ; int mid = l + ((r - l) >> 1); w[rt << 1] = mid - l + 1; w[rt << 1 | 1] = r - mid; flag[rt << 1] = flag[rt << 1 | 1] = 1; flag[rt] = 0; } void clr(int rt, int l, int r){ w[rt] = flag[rt] = 0; if(l == r) return ; int mid = l + ((r - l) >> 1); clr(rt << 1, l, mid); clr(rt << 1 | 1, mid + 1, r); } void mdf(int rt, int l, int r, int x, int y){ if(l > r) return ; if(l >= x && r <= y){ w[rt] = r - l + 1; flag[rt] = 1; return ; } pushdown(rt, l, r); int mid = l + ((r - l) >> 1); if(x <= mid) mdf(rt << 1, l, mid, x, y); if(y > mid) mdf(rt << 1 | 1, mid + 1, r, x, y); update(rt); } int qry(int rt, int l, int r, int x, int y){ if(l > r) return 0; if(l >= x && r <= y) return w[rt]; pushdown(rt, l, r); int mid = l + ((r - l) >> 1), ret = 0; if(x <= mid) ret += qry(rt << 1, l, mid, x, y); if(y > mid) ret += qry(rt << 1 | 1, mid + 1, r, x, y); return ret; } }seg; int main(){ int T; scanf("%d", &T); while(T--){ scanf("%d", &n); seg.clr(1, 1, n); for(int i = 0; i <= n; ++i) mx[i] = 0, mn[i] = inf; for(int i = 1; i <= n; ++i){ scanf("%d", &a[i]); mx[a[i]] = max(mx[a[i]], i); mn[a[i]] = min(mn[a[i]], i); } ans = 0; top = 0; mn[0] = mx[0] = 0; for(int r = 1; r <= n; ++r){ if(r == mx[a[r]] && r > mn[a[r]]){ seg.mdf(1, 1, n, mn[a[r]] + 1, r); // printf("%d %d\n", mn[a[r]] + 1, r); } stk[++top] = r; while(top && mx[a[stk[top]]] <= r) --top; //这里维护颜色调了好久 蠢了蠢了 注意那个pre不是单调递增的哦 ans += (r - stk[top] - seg.qry(1, 1, n, stk[top] + 1, r)); //printf("ans = %d %d %d %d %d %d\n", ans, r, stk[top], stk[top] + 1, r, seg.qry(1, 1, n, stk[top] + 1, r)); } printf("%lld\n", ans); } return 0; }
来源:https://www.cnblogs.com/hjmmm/p/10624563.html