读入Iris数据集细节资料
from sklearn.datasets import load_iris
# 使用加载器读取数据并且存入变量iris
iris = load_iris()
# 查验数据规模
iris.data.shape
# 查看数据说明
print(iris.DESCR)
Iris Plants Database
====================
Notes
-----
Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris
The famous Iris database, first used by Sir R.A Fisher
This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
References
----------
- Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
- Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
- Many, many more ...
通过上述代码对数据的查验以及数据本身的描述,我们了解到Iris数据集共有150朵鸢尾数据样本,并且均匀分布在3个不同的亚种;每个数据样本有总共4个不同的关于花瓣、花萼的形状特征所描述。由于没有制定的测试集合,因此按照惯例,我们需要对数据进行随即分割,25%的样本用于测试,其余75%的样本用于模型的训练。
由于不清楚数据集的排列是否随机,可能会有按照类别去进行依次排列,这样训练样本的不均衡的,所以我们需要分割数据,已经默认有随机采样的功能。
对Iris数据集进行分割
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.25,random_state=42)
/root/usr/anaconda3/lib/python3.7/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)
对特征数据进行标准化
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test)
K近邻算法是非常直观的机器学习模型,我们可以发现K近邻算法没有参数训练过程,也就是说,我们没有通过任何学习算法分析训练数据,而只是根据测试样本训练数据的分布直接作出分类决策。因此,K近邻属于无参数模型中非常简单一种。
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
def knniris():
"""
鸢尾花分类
:return: None
"""
# 数据集获取和分割
lr = load_iris()
x_train, x_test, y_train, y_test = train_test_split(lr.data, lr.target, test_size=0.25)
# 进行标准化
std = StandardScaler()
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# estimator流程
knn = KNeighborsClassifier()
# # 得出模型
knn.fit(x_train,y_train)
#
# # 进行预测或者得出精度
y_predict = knn.predict(x_test)
#
score = knn.score(x_test,y_test)
# 通过网格搜索,n_neighbors为参数列表
param = {"n_neighbors": [3, 5, 7]}
gs = GridSearchCV(knn, param_grid=param, cv=10)
# 建立模型
gs.fit(x_train,y_train)
print(gs)
# 预测数据
print(gs.score(x_test,y_test))
# 分类模型的精确率和召回率
print("每个类别的精确率与召回率:",classification_report(y_test, y_predict,target_names=lr.target_names))
return None
if __name__ == "__main__":
knniris()
GridSearchCV(cv=10, error_score='raise',
estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform'),
fit_params=None, iid=True, n_jobs=1,
param_grid={'n_neighbors': [3, 5, 7]}, pre_dispatch='2*n_jobs',
refit=True, return_train_score='warn', scoring=None, verbose=0)
0.9473684210526315
每个类别的精确率与召回率: precision recall f1-score support
setosa 1.00 1.00 1.00 14
versicolor 0.92 0.92 0.92 13
virginica 0.91 0.91 0.91 11
avg / total 0.95 0.95 0.95 38
来源:CSDN
作者:曾鸿举
链接:https://blog.csdn.net/zenghongju/article/details/104683802