第四章 数组

倖福魔咒の 提交于 2020-02-27 18:43:10

1.创建基本类型一维数组

public class Test {
    public static void main(String args[]) {
        int[] s = null; // 声明数组;
        s = new int[10]; // 给数组分配空间;
        for (int i = 0; i < 10; i++) {
            s[i] = 2 * i + 1;//给数组元素赋值;
            System.out.println(s[i]);
        } 
    }
}

在这里插入图片描述
2.创建引用类型一维数组

class Man{
    private int age;
    private int id;
    public Man(int id,int age) {
        super();
        this.age = age;
        this.id = id;
    }
}
public class AppMain {
    public static void main(String[] args) {
        Man[] mans;  //声明引用类型数组; 
        mans = new Man[10];  //给引用类型数组分配空间;
         
        Man m1 = new Man(1,11);
        Man m2 = new Man(2,22);  
         
        mans[0]=m1;//给引用类型数组元素赋值;
        mans[1]=m2;//给引用类型数组元素赋值;
    }
}

在这里插入图片描述
3.初始化
数组的初始化方式总共有三种:静态初始化、动态初始化、默认初始化
a.静态初始化

  除了用new关键字来产生数组以外,还可以直接在定义数组的同时就为数组元素分配空间并赋值。

【示例1】静态初始化数组

int[] a = { 1, 2, 3 };// 静态初始化基本类型数组;
Man[] mans = { new Man(1, 1), new Man(2, 2) };// 静态初始化引用类型数组;

b.动态初始化

  数组定义与为数组元素分配空间并赋值的操作分开进行。

【示例2】动态初始化数组

int[] a1 = new int[2];//动态初始化数组,先分配空间;
a1[0]=1;//给数组元素赋值;
a1[1]=2;//给数组元素赋值;

c.数组的默认初始化

  数组是引用类型,它的元素相当于类的实例变量,因此数组一经分配空间,其中的每个元素也被按照实例变量同样的方式被隐式初始化。

【示例3】数组的默认初始化

int a2[] = new int[2]; // 默认值:0,0
boolean[] b = new boolean[2]; // 默认值:false,false
String[] s = new String[2]; // 默认值:null, null

4.数组的遍历

public class TestPoint {

	public static void main(String[] args) {
		int[] arr = { 1, 2, 3, 4 };
		for (int i = 0; i < arr.length; i++) {//for循环遍历
			System.out.println(arr[i]);
		}
		for (int i : arr) {//for-each遍历(增强for循环)
			System.out.println(i);
		}
		System.out.println(Arrays.toString(arr));//输出结果为[1,2,3,4]
	}
}

注意:
a. for-each增强for循环在遍历数组过程中不能修改数组中某元素的值。
b. for-each仅适用于遍历,不涉及有关索引(下标)的操作。
5.数组的拷贝
a. System类里也包含了一个
static void arraycopy(object src,int srcpos,object dest, int destpos,int length)方法,该方法可以将src数组里的元素值赋给dest数组的元素,其中srcpos指定从src数组的第几个元素开始赋值,length参数指定将src数组的多少个元素赋给dest数组的元素。

public class TestPoint {
	public static void main(String[] args) {
		String[] arr= {"小王","大王","红桃","黑桃"};
		String[] brr=new String[5];
		System.arraycopy(arr, 0, brr, 0, arr.length);
		System.out.println(Arrays.toString(brr));
		//输出结果[小王, 大王, 红桃, 黑桃, null]
	}
}

6.java.util.Arrays类
【示例1】数组元素的排序

import java.util.Arrays;
public class Test {
    public static void main(String args[]) {
        int[] a = {1,3,9,8,2,4,5};
        System.out.println(Arrays.toString(a));
        Arrays.sort(a);
        System.out.println(Arrays.toString(a));//[1, 2, 3, 4, 5, 8, 9]
    }
}

【示例2】数组元素是引用类型的排序(Comparable接口的应用)

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        Man[] msMans = { new Man(3, "a"), new Man(60, "b"), new Man(2, "c") };
        Arrays.sort(msMans);
        System.out.println(Arrays.toString(msMans));//[c, a, b]
    }
}
 
class Man implements Comparable {
    int age;
    int id;
    String name;
 
    public Man(int age, String name) {
        super();
        this.age = age;
        this.name = name;
    }
 
    public String toString() {
        return this.name;
    }
 
    public int compareTo(Object o) {
        Man man = (Man) o;
        if (this.age < man.age) {
            return -1;
        }
        if (this.age > man.age) {
            return 1;
        }
        return 0;
    }
}

【示例3】二分法查找

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        int[] a = {1,2,323,23,543,12,59};
        System.out.println(Arrays.toString(a));
        Arrays.sort(a);   //使用二分法查找,必须先对数组进行排序;
        System.out.println(Arrays.toString(a));
        //返回排序后新的索引位置,若未找到返回负数。
        System.out.println("该元素的索引:"+Arrays.binarySearch(a, 12)); //该元素的索引为2
    }
}

【示例4】数组填充

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        int[] a= {1,2,323,23,543,12,59};
        System.out.println(Arrays.toString(a));
        Arrays.fill(a, 2, 4, 100);  //将2到4索引的元素替换为100;
        System.out.println(Arrays.toString(a));//[1,2,100,100,543,12,59]
    }
}

6.多维数组
【示例1】二维数组的声明

public class Test {
    public static void main(String[] args) {
        // Java中多维数组的声明和初始化应按从低维到高维的顺序进行
        int[][] a = new int[3][];
        a[0] = new int[2];
        a[1] = new int[4];
        a[2] = new int[3];
        // int a1[][]=new int[][4];//非法
    }
}

【示例2】二维数组的静态初始化

public class Test {
    public static void main(String[] args) {
        int[][] a = { { 1, 2, 3 }, { 3, 4 }, { 3, 5, 6, 7 } };
        System.out.println(a[2][3]);
    }
}

在这里插入图片描述
【示例3】二维数组的动态初始化

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        int[][] a = new int[3][];
        // a[0] = {1,2,5}; //错误,没有声明类型就初始化
        a[0] = new int[] { 1, 2 };
        a[1] = new int[] { 2, 2 };
        a[2] = new int[] { 2, 2, 3, 4 };
        System.out.println(a[2][3]);
        System.out.println(Arrays.toString(a[0]));//[1,2]
        System.out.println(Arrays.toString(a[1]));//[2,2]
        System.out.println(Arrays.toString(a[2]));//[2,2,3,4]
    }
}

【示例4】获取数组长度

//获取的二维数组第一维数组的长度。
System.out.println(a.length);
//获取第二维第一个数组长度。
System.out.println(a[0].length);

7.数组存储表格数据
表格数据模型是计算机世界最普遍的模型,可以这么说,大家在互联网上看到的所有数据本质上都是“表格”,无非是表格之间互相套用。如下表格是一张雇员表:
在这里插入图片描述
我们观察表格,发现每一行可以使用一个一维数组存储:

Object[] a1 = {1001,"高淇",18,"讲师","2006-2-14"};
Object[] a2 = {1002,"高小七",19,"助教","2007-10-10"};
Object[] a3 = {1003,"高小琴",20,"班主任","2008-5-5"};

注意事项

 此处基本数据类型”1001”,本质不是Object对象。JAVA编译器会自动把基本数据类型“自动装箱”成包装类对象。

 这样我们只需要再定义一个二维数组,将上面3个数组放入即可:
Object[][]  emps = new Object[3][];
emps[0] = a1;
emps[1] = a2;
emps[2] = a3;

【示例1】 二维数组保存表格数据

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        Object[] a1 = {1001,"高淇",18,"讲师","2006-2-14"};
        Object[] a2 = {1002,"高小七",19,"助教","2007-10-10"};
        Object[] a3 = {1003,"高小琴",20,"班主任","2008-5-5"};
        Object[][]  emps = new Object[3][];
        emps[0] = a1;
        emps[1] = a2;
        emps[2] = a3;
        System.out.println(Arrays.toString(emps[0]));
        System.out.println(Arrays.toString(emps[1]));
        System.out.println(Arrays.toString(emps[2]));  
    }
}

8.冒泡排序的基础算法
冒泡排序算法的运作如下:

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

  3. 针对所有的元素重复以上的步骤,除了最后一个。

  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

  大家可以用如上思想,将下面的人按照身高从低到高重新排列:

在这里插入图片描述
【示例1】冒泡排序的基础算法

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        int[] values = { 3, 1, 6, 2, 9, 0, 7, 4, 5, 8 };
        bubbleSort(values);
        System.out.println(Arrays.toString(values));
    }
 
    public static void bubbleSort(int[] values) {
        int temp;
        for (int i = 0; i < values.length; i++) {
            for (int j = 0; j < values.length - 1 - i; j++) {
                if (values[j] > values[j + 1]) {
                    temp = values[j];
                    values[j] = values[j + 1];
                    values[j + 1] = temp;
                }
            }
        }
    }
}

9.冒泡排序的优化算法
基于冒泡排序的以下特点:

  1.整个数列分成两部分:前面是无序数列,后面是有序数列。

  2.初始状态下,整个数列都是无序的,有序数列是空。

  3.每一趟循环可以让无序数列中最大数排到最后,(也就是说有序数列的元素个数增加1),也就是不用再去顾及有序序列。

  4.每一趟循环都从数列的第一个元素开始进行比较,依次比较相邻的两个元素,比较到无序数列的末尾即可(而不是数列的末尾);如果前一个大于后一个,交换。

  5.判断每一趟是否发生了数组元素的交换,如果没有发生,则说明此时数组已经有序,无需再进行后续趟数的比较了。此时可以中止比较。

【示例1】冒泡排序的优化算法

import java.util.Arrays;
public class Test1 {
    public static void main(String[] args) {
        int[] values = { 3, 1, 6, 2, 9, 0, 7, 4, 5, 8 };
        bubbleSort(values);
        System.out.println(Arrays.toString(values));
    }
    public static void bubbleSort(int[] values) {
        int temp;
        int i;
        // 外层循环:n个元素排序,则至多需要n-1趟循环
        for (i = 0; i < values.length - 1; i++) {
            // 定义一个布尔类型的变量,标记数组是否已达到有序状态
            boolean flag = true;
    /*内层循环:每一趟循环都从数列的前两个元素开始进行比较,比较到无序数组的最后*/
            for (int j = 0; j < values.length - 1 - i; j++) {
                // 如果前一个元素大于后一个元素,则交换两元素的值;
                if (values[j] > values[j + 1]) {
                    temp = values[j];
                    values[j] = values[j + 1];
                    values[j + 1] = temp;
                       //本趟发生了交换,表明该数组在本趟处于无序状态,需要继续比较;
                    flag = false;
                }
            }
           //根据标记量的值判断数组是否有序,如果有序,则退出;无序,则继续循环。
            if (flag) {
                break;
            }
        }
    }
}

10.二分法查找
二分法检索(binary search)又称折半检索,二分法检索的基本思想是设数组中的元素从小到大有序地存放在数组(array)中,首先将给定值key与数组中间位置上元素的关键码(key)比较,如果相等,则检索成功;

否则,若key小,则在数组前半部分中继续进行二分法检索;

若key大,则在数组后半部分中继续进行二分法检索。

这样,经过一次比较就缩小一半的检索区间,如此进行下去,直到检索成功或检索失败。

二分法检索是一种效率较高的检索方法。比如,我们要在数组[7, 8, 9, 10, 12, 20, 30, 40, 50, 80, 100]中查询到10元素,过程如下:
在这里插入图片描述
【示例1】二分法查找

import java.util.Arrays;
public class Test {
    public static void main(String[] args) {
        int[] arr = { 30,20,50,10,80,9,7,12,100,40,8};
        int searchWord = 20; // 所要查找的数
        Arrays.sort(arr); //二分法查找之前,一定要对数组元素排序
        System.out.println(Arrays.toString(arr));
        System.out.println(searchWord+"元素的索引:"+binarySearch(arr,searchWord));
    }
 
    public static int binarySearch(int[] array, int value){
        int low = 0;
        int high = array.length - 1;
        while(low <= high){
            int middle = (low + high) / 2;
            if(value == array[middle]){
                return middle;         //返回查询到的索引位置
            }
            if(value > array[middle]){
                low = middle + 1;
            }
            if(value < array[middle]){
                high = middle - 1;
            }
        }
        return -1;     //上面循环完毕,说明未找到,返回-1
    }
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!