How to set the input of a Keras layer with a Tensorflow tensor?

旧城冷巷雨未停 提交于 2019-11-27 15:55:13

问题


In my previous question, I used Keras' Layer.set_input() to connect my Tensorflow pre-processing output tensor to my Keras model's input. However, this method has been removed after Keras version 1.1.1.

How can I achieve this in newer Keras versions?

Example:

# Tensorflow pre-processing
raw_input = tf.placeholder(tf.string)
### some TF operations on raw_input ###
tf_embedding_input = ...    # pre-processing output tensor

# Keras model
model = Sequential()
e = Embedding(max_features, 128, input_length=maxlen)

### THIS DOESN'T WORK ANYMORE ###
e.set_input(tf_embedding_input)
################################

model.add(e)
model.add(LSTM(128, activation='sigmoid'))
model.add(Dense(num_classes, activation='softmax'))

回答1:


After you are done with pre-processing, You can add the tensor as input layer by calling tensor param of Input

So in your case:

tf_embedding_input = ...    # pre-processing output tensor

# Keras model
model = Sequential()
model.add(Input(tensor=tf_embedding_input)) 
model.add(Embedding(max_features, 128, input_length=maxlen))


来源:https://stackoverflow.com/questions/42441431/how-to-set-the-input-of-a-keras-layer-with-a-tensorflow-tensor

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!