支持离线
边和询问都按权值排序,然后扫描线对每一条边进行处理,将小于等于当前询问权值的边进行处理
加入一条边相当于合并两个连通块,用并查集维护根,线段树合并两个根处的线段树即可
查询就在根查询权值线段树的第 \(k\) 大
把递归版的线段树换成循环的trie的写法,跑得更慢了。。
#include <bits/stdc++.h> #define lp tree[p].l #define rp tree[p].r #define rq tree[q].r #define lq tree[q].l #define mid ((l + r) >> 1) char buf[1 << 21], *p1 = buf, *p2 = buf; inline char getc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++; } inline int read() { int x = 0, f = 1; char ch = getc(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getc(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - 48; ch = getc(); } return x * f; } const int N = 1e5 + 7; struct Edge { int u, v, c; void in() { u = read(), v = read(), c = read(); } bool operator < (const Edge &p) const { return c < p.c; } } edge[N * 5]; struct Que { int u, c, k, id; void in() { u = read(), c = read(), k = read(); } bool operator < (const Que &p) const { return c < p.c; } } Q[N * 5]; struct Node { int l, r, sum; } tree[N * 30]; int fa[N], sz[N], n, m, h[N], w[N], q, root[N], ans[N * 5], tol; int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); } void update(int &p, int l, int r, int pos) { if (!p) p = ++tol; tree[p].sum++; if (l == r) return; if (pos <= mid) update(lp, l, mid, pos); else update(rp, mid + 1, r, pos); } int merge(int p, int q) { if (!p || !q) return p | q; tree[p].sum += tree[q].sum; lp = merge(lp, lq); rp = merge(rp, rq); return p; } int query(int p, int l, int r, int k) { if (!p) return -1; if (l == r) return l; if (tree[lp].sum >= k) return query(lp, l, mid, k); return query(rp, mid + 1, r, k - tree[lp].sum); } void dsu_merge(int u, int v) { u = find(u), v = find(v); if (u == v) return; if (sz[u] < sz[v]) std::swap(u, v); fa[v] = u; sz[u] += sz[v]; root[u] = merge(root[u], root[v]); } int main() { n = read(), m = read(), q = read(); for (int i = 1; i <= n; i++) h[i] = w[i] = read(); std::sort(w + 1, w + 1 + n); int all = std::unique(w + 1, w + 1 + n) - w - 1; for (int i = 1; i <= m; i++) edge[i].in(); for (int i = 1; i <= q; i++) Q[i].in(), Q[i].id = i; std::sort(edge + 1, edge + 1 + m); std::sort(Q + 1, Q + 1 + q); for (int i = 1; i <= n; i++) { fa[i] = i; sz[i] = 1; update(root[i], 1, all, std::lower_bound(w + 1, w + 1 + all, h[i]) - w); } int cur = 1; for (int i = 1; i <= q; i++) { while (cur <= m && edge[cur].c <= Q[i].c) { dsu_merge(edge[cur].u, edge[cur].v); cur++; } int f = find(Q[i].u); if (sz[f] < Q[i].k) { ans[Q[i].id] = -1; continue; } int k = sz[f] - Q[i].k + 1; ans[Q[i].id] = w[query(root[f], 1, all, k)]; } for (int i = 1; i <= q; i++) printf("%d\n", ans[i]); return 0; }
来源:https://www.cnblogs.com/Mrzdtz220/p/12326091.html