Circle-Circle Collision Prediction

戏子无情 提交于 2019-11-27 15:09:16

问题


I'm aware of how to check if two circles are intersecting one another. However, sometimes the circles move too fast and end up avoiding collision on the next frame.

My current solution to the problem is to check circle-circle collision an arbitrary amount of times between the previous position and it's current position.

Is there a mathematical way to find the time it takes for the two circle to collide? If I was able to get that time value, I could move the circle to the position at that time and then collide them at that point.

Edit: Constant Velocity


回答1:


I'm assuming the motion of the circles is linear. Let's say the position of circle A's centre is given by the vector equation Ca = Oa + t*Da where

Ca = (Cax, Cay) is the current position
Oa = (Oax, Oay) is the starting position
t is the elapsed time
Da = (Dax, Day) is the displacement per unit of time (velocity).

Likewise for circle B's centre: Cb = Ob + t*Db.

Then you want to find t such that ||Ca - Cb|| = (ra + rb) where ra and rb are the radii of circles A and B respectively.

Squaring both sides:
||Ca-Cb||^2 = (ra+rb)^2
and expanding:
(Oax + t*Dax - Obx - t*Dbx)^2 + (Oay + t*Day - Oby - t*Dby)^2 = (ra + rb)^2

From that you should get a quadratic polynomial that you can solve for t (if such a t exists).




回答2:


Here is a way to solve for t the equation in Andrew Durward's excellent answer.

To just plug in values one can skip to the bottom.

(Oax + t*Dax - Obx - t*Dbx)^2 + (Oay + t*Day - Oby - t*Dby)^2 = (ra + rb)^2


(Oax * (Oax + t*Dax - Obx - t*Dbx) + t*Dax * (Oax + t*Dax - Obx - t*Dbx)
 - Obx * (Oax + t*Dax - Obx - t*Dbx) - t*Dbx * (Oax + t*Dax - Obx - t*Dbx))
+
(Oay * (Oay + t*Day - Oby - t*Dby) + t*Day * (Oay + t*Day - Oby - t*Dby)
 - Oby * (Oay + t*Day - Oby - t*Dby) - t*Dby * (Oay + t*Day - Oby - t*Dby))
=
(ra + rb)^2


Oax^2 + (Oax * t*Dax) - (Oax * Obx) - (Oax * t*Dbx)
 + (t*Dax * Oax) + (t*Dax)^2 - (t*Dax * Obx) - (t*Dax * t*Dbx)
 - (Obx * Oax) - (Obx * t*Dax) + Obx^2 + (Obx * t*Dbx)
 - (t*Dbx * Oax) - (t*Dbx * t*Dax) + (t*Dbx * Obx) + (t*Dbx)^2
+
Oay^2 + (Oay * t*Day) - (Oay * Oby) - (Oay * t*Dby)
 + (t*Day * Oay) + (t*Day)^2 - (t*Day * Oby) - (t*Day * t*Dby)
 - (Oby * Oay) - (Oby * t*Day) + Oby^2 + (Oby * t*Dby)
 - (t*Dby * Oay) - (t*Dby * t*Day) + (t*Dby * Oby) + (t*Dby)^2
=
(ra + rb)^2


t^2 * (Dax^2 + Dbx^2 - (Dax * Dbx) - (Dbx * Dax)
       + Day^2 + Dby^2 - (Day * Dby) - (Dby * Day))
+
t * ((Oax * Dax) - (Oax * Dbx) + (Dax * Oax) - (Dax * Obx)
      - (Obx * Dax) + (Obx * Dbx) - (Dbx * Oax) + (Dbx * Obx)
      + (Oay * Day) - (Oay * Dby) + (Day * Oay) - (Day * Oby)
      - (Oby * Day) + (Oby * Dby) - (Dby * Oay) + (Dby * Oby))
+
Oax^2 - (Oax * Obx) - (Obx * Oax) + Obx^2
  + Oay^2 - (Oay * Oby) - (Oby * Oay) + Oby^2 - (ra + rb)^2
=
0

Now it's a standard form quadratic equation:

ax2 + bx + c = 0

solved like this:

x = (−b ± sqrt(b^2 - 4ac)) / 2a       // this x here is t

where--

a = Dax^2 + Dbx^2 + Day^2 + Dby^2 - (2 * Dax * Dbx) - (2 * Day * Dby)

b = (2 * Oax * Dax) - (2 * Oax * Dbx) - (2 * Obx * Dax) + (2 * Obx * Dbx)
     + (2 * Oay * Day) - (2 * Oay * Dby) - (2 * Oby * Day) + (2 * Oby * Dby)

c = Oax^2 + Obx^2 + Oay^2 + Oby^2
    - (2 * Oax * Obx) - (2 * Oay * Oby) - (ra + rb)^2

t exists (collision will occur) if--

(a != 0) && (b^2 >= 4ac)



回答3:


You can predict collision by using direction vector and speed, this gives you the next steps, and when they will make a collision (if there will be).

You just need to check line crossing algorithm to detect that...



来源:https://stackoverflow.com/questions/11369616/circle-circle-collision-prediction

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!