1、Anaconda2 安装
ROS 1中使用的是 python2.7,所以在地址: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/#linux 中下载 python2.7版本的Anaconda2 ,安装过程如下:
chmod +x Anaconda2-5.2.0-Linux-x86_64.sh
bash Anaconda2-5.2.0-Linux-x86_64.sh
安装完成后,执行下面指令, 如果可以看到 Python 2.7.xx :: Anaconda, Inc…,说明安装成功。
source ~/.bashrc
python -V
接下来配置环境变量 PYTHONPATH,编辑 ~/.bashrc ,修改或者添加内容如下:
export PYTHONPATH="/home/wxm/anaconda2/lib/python2.7/dist-packages:$PYTHONPATH
2、Tensorflow、Keras等安装
本文中用到的机器学习算法是DQN(Deep Q-Learning),基于Tensorflow与Keras开发,为了避免包冲突,在Anaconda中构建虚拟环境(取名为py2):
conda create -n py2 pip python=2.7
在虚拟环境(envs)中安装Tensorflow、Keras以及ROS依赖包:
source activate py2
pip install -U rosinstall msgpack empy defusedxml netifaces
pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.8.0-cp27-none-linux_x86_64.whl
pip install keras
source deactivate py2
3、下载并编译源码
本文先使用github中开源的机器学习的源码进行学习,下载编译过程如下:
cd ~/catkin_ws/src/
git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
git clone https://github.com/ROBOTIS-GIT/turtlebot3.git
git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations
git clone https://github.com/ROBOTIS-GIT/turtlebot3_machine_learning.git
cd ~/catkin_ws && catkin_make
编译成功以后执行下面的脚本,也可以将其添加到~/.bashrc中或者直接source ~/.bashrc
source /home/wxm/turtlebot3_ws/devel/setup.bash
4、设置参数并运行范例
设置参数:
打开源码文件 turtlebot3/turtlebot3_description/urdf/turtlebot3_burger.gazebo.xacro,修改一下两处:
<xacro:arg name="laser_visual" default="false"/> # 如果想看到激光扫描线,设置成 `true`
<scan>
<horizontal>
<samples>360</samples> # 修改成24
<resolution>1</resolution>
<min_angle>0.0</min_angle>
<max_angle>6.28319</max_angle>
</horizontal>
</scan>
打开一个终端,启动turtlebot3 gazebo环境等节点:
roscore
roslaunch turtlebot3_gazebo turtlebot3_stage_1.launch
打开另外一个终端,启动DQN算法等节点:
source activate py2
roslaunch turtlebot3_dqn turtlebot3_dqn_stage_1.launch
注意:运行的时候出现错误:[turtlebot3_dqn_stage_1-1] process has died [pid 8329, exit code 1, cmd /home/wxm/turtlebot3_ws/src/turtlebot3_machine_learning/turtlebot3_dqn/nodes/turtlebot3_dqn_stage_1 __name:=turtlebot3_dqn_stage_1 __log:=/home/wxm/.ros/log/138fed20-2e1c-11ea-a94c-0871908fc9ab/turtlebot3_dqn_stage_1-1.log]. log file: /home/wxm/.ros/log/138fed20-2e1c-11ea-a94c-0871908fc9ab/turtlebot3_dqn_stage_1-1.log*
这是因为tensorflow和keras版本不兼容,所以将之前下载的keras卸载,重新下载:
pip install keras==2.1.5
问题解决。
打开第三个终端,启动数据图形显示节点:
pip install pyqtgraph
roslaunch turtlebot3_dqn result_graph.launch
来源:CSDN
作者:土星萌萌哒
链接:https://blog.csdn.net/weixin_41281801/article/details/103826814