MapReduce的输入输出和处理流程

巧了我就是萌 提交于 2020-02-02 20:42:29

MapReduce的输入和输出

MapReduce框架运转在<key,value>键值对上,也就是说,框架把作业的输入看成是一组<key,value>键值对,同样也产生一组<key,value>键值对作为作业的输出,这两组键值对可能是不同的。

一个MapReduce作业的输入和输出类型如下图所示:可以看出在整个标准的流程中,会有三组<key,value>键值对类型的存在。

MapReduce的处理流程解析

Mapper执行过程详解

  • 第一阶段是把输入目录下的文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认情况下,Split size = Block size。每一个切片由一个MapTask处理。(getSplits)

  • 第二阶段是对切片中的数据按照一定的规则解析成<key,value>对。默认规则是把每一行文本内容解析成键值对。key是每一行的起始位置(行偏移量,单位是字节),value是本行的文本内容。(TextInputFormat)

  • 第三阶段是调用Mapper类中的map方法。上阶段中每解析出来一个<k,v>,就调用一次map方法。每次调用map方法会输出零个或多个键值对。

  • 第四阶段是按照一定的规则对第三阶段输出的键值对进行分区。默认是只有一个区。分区的数量就是Reducer任务运行的数量。默认只有一个Reducer任务。

  • 第五阶段是对每个分区中的键值对进行排序。首先,按照键进行排序,对于键相同的键值对,按照值进行排序。比如三个键值对<2,2>、<1,3>、<2,1>,键和值分别是整数。那么排序后的结果是<1,3>、<2,1>、<2,2>。如果有第六阶段,那么进入第六阶段;如果没有,直接输出到文件中。

  • 第六阶段是对数据进行局部聚合处理,也就是combiner处理。键相等的键值对会调用一次reduce方法。经过这一阶段,数据量会减少。本阶段默认是没有的。

Reducer执行过程详解

  • 第一阶段是Reducer任务会主动从Mapper任务复制其输出的键值对。Mapper任务可能会有很多,因此Reducer会复制多个Mapper的输出。

  • 第二阶段是把复制到Reducer本地数据,全部进行合并,即把分散的数据合并成一个大的数据。再对合并后的数据排序。

  • 第三阶段是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对。最后把这些输出的键值对写入到HDFS文件中。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!