问题
I have [~]
as my delimiter for some csv files I am reading.
1[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
I have tried this
val rddFile = sc.textFile("file.csv")
val rddTransformed = rddFile.map(eachLine=>eachLine.split("[~]"))
val df = rddTransformed.toDF()
display(df)
However this issue with this, is that it comes as a single value array with [
and ]
in each field. So the array would be
["1[","]a[","]b[",...]
I can't use
val df = spark.read.option("sep", "[~]").csv("file.csv")
Because multi-character seperator is not supported. What other approach can I take?
1[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
2[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
3[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
Edit - this is not a duplicate, the duplicated thread is about multi delimiters, this is multi-character single delimiter
回答1:
val df = spark.read.format("csv").load("inputpath")
df.rdd.map(i => i.mkString.split("\\[\\~\\]")).toDF().show(false)
try below
for your another requirement
val df1 = df.rdd.map(i => i.mkString.split("\\[\\~\\]").mkString(",")).toDF()
val iterationColumnLength = df1.rdd.first.mkString(",").split(",").length
df1.withColumn("value",split(col("value"),",")).select((0 until iterationColumnLength).map(i => col("value").getItem(i).as("col_" + i)): _*).show
来源:https://stackoverflow.com/questions/52083828/possible-to-handle-multi-character-delimiter-in-spark