sparse matrix svd in python

扶醉桌前 提交于 2020-01-29 02:32:05

问题


Does anyone know how to perform svd operation on a sparse matrix in python? It seems that there is no such functionality provided in scipy.sparse.linalg.


回答1:


You can use the Divisi library to accomplish this; from the home page:

  • It is a library written in Python, using a C library (SVDLIBC) to perform the sparse SVD operation using the Lanczos algorithm. Other mathematical computations are performed by NumPy.



回答2:


Sounds like sparsesvd is what you're looking for! SVDLIBC efficiently wrapped in Python (no extra data copies made in RAM).

Simply run "easy_install sparsesvd" to install.




回答3:


You can try scipy.sparse.linalg.svd, although the documentation is still a work-in-progress and thus rather laconic.




回答4:


A simple example using python-recsys library:

from recsys.algorithm.factorize import SVD

svd = SVD()
svd.load_data(dataset)
svd.compute(k=100, mean_center=True)

ITEMID1 = 1  # Toy Story
svd.similar(ITEMID1)
# Returns:
# [(1,    1.0),                 # Toy Story
#  (3114, 0.87060391051018071), # Toy Story 2
#  (2355, 0.67706936677315799), # A bug's life
#  (588,  0.5807351496754426),  # Aladdin
#  (595,  0.46031829709743477), # Beauty and the Beast
#  (1907, 0.44589398718134365), # Mulan
#  (364,  0.42908159895574161), # The Lion King
#  (2081, 0.42566581277820803), # The Little Mermaid
#  (3396, 0.42474056361935913), # The Muppet Movie
#  (2761, 0.40439361857585354)] # The Iron Giant

ITEMID2 = 2355 # A bug's life
svd.similarity(ITEMID1, ITEMID2)
# 0.67706936677315799


来源:https://stackoverflow.com/questions/3234809/sparse-matrix-svd-in-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!