问题
string.split() returns a list instance. Is there a version that returns a generator instead? Are there any reasons against having a generator version?
回答1:
It is highly probable that re.finditer uses fairly minimal memory overhead.
def split_iter(string):
return (x.group(0) for x in re.finditer(r"[A-Za-z']+", string))
Demo:
>>> list( split_iter("A programmer's RegEx test.") )
['A', "programmer's", 'RegEx', 'test']
edit: I have just confirmed that this takes constant memory in python 3.2.1, assuming my testing methodology was correct. I created a string of very large size (1GB or so), then iterated through the iterable with a for
loop (NOT a list comprehension, which would have generated extra memory). This did not result in a noticeable growth of memory (that is, if there was a growth in memory, it was far far less than the 1GB string).
回答2:
The most efficient way I can think of it to write one using the offset
parameter of the str.find()
method. This avoids lots of memory use, and relying on the overhead of a regexp when it's not needed.
[edit 2016-8-2: updated this to optionally support regex separators]
def isplit(source, sep=None, regex=False):
"""
generator version of str.split()
:param source:
source string (unicode or bytes)
:param sep:
separator to split on.
:param regex:
if True, will treat sep as regular expression.
:returns:
generator yielding elements of string.
"""
if sep is None:
# mimic default python behavior
source = source.strip()
sep = "\\s+"
if isinstance(source, bytes):
sep = sep.encode("ascii")
regex = True
if regex:
# version using re.finditer()
if not hasattr(sep, "finditer"):
sep = re.compile(sep)
start = 0
for m in sep.finditer(source):
idx = m.start()
assert idx >= start
yield source[start:idx]
start = m.end()
yield source[start:]
else:
# version using str.find(), less overhead than re.finditer()
sepsize = len(sep)
start = 0
while True:
idx = source.find(sep, start)
if idx == -1:
yield source[start:]
return
yield source[start:idx]
start = idx + sepsize
This can be used like you want...
>>> print list(isplit("abcb","b"))
['a','c','']
While there is a little bit of cost seeking within the string each time find() or slicing is performed, this should be minimal since strings are represented as continguous arrays in memory.
回答3:
This is generator version of split()
implemented via re.search()
that does not have the problem of allocating too many substrings.
import re
def itersplit(s, sep=None):
exp = re.compile(r'\s+' if sep is None else re.escape(sep))
pos = 0
while True:
m = exp.search(s, pos)
if not m:
if pos < len(s) or sep is not None:
yield s[pos:]
break
if pos < m.start() or sep is not None:
yield s[pos:m.start()]
pos = m.end()
sample1 = "Good evening, world!"
sample2 = " Good evening, world! "
sample3 = "brackets][all][][over][here"
sample4 = "][brackets][all][][over][here]["
assert list(itersplit(sample1)) == sample1.split()
assert list(itersplit(sample2)) == sample2.split()
assert list(itersplit(sample3, '][')) == sample3.split('][')
assert list(itersplit(sample4, '][')) == sample4.split('][')
EDIT: Corrected handling of surrounding whitespace if no separator chars are given.
回答4:
Did some performance testing on the various methods proposed (I won't repeat them here). Some results:
str.split
(default = 0.3461570239996945- manual search (by character) (one of Dave Webb's answer's) = 0.8260340550004912
re.finditer
(ninjagecko's answer) = 0.698872097000276str.find
(one of Eli Collins's answers) = 0.7230395330007013itertools.takewhile
(Ignacio Vazquez-Abrams's answer) = 2.023023967998597str.split(..., maxsplit=1)
recursion = N/A†
†The recursion answers (string.split
with maxsplit = 1
) fail to complete in a reasonable time, given string.split
s speed they may work better on shorter strings, but then I can't see the use-case for short strings where memory isn't an issue anyway.
Tested using timeit
on:
the_text = "100 " * 9999 + "100"
def test_function( method ):
def fn( ):
total = 0
for x in method( the_text ):
total += int( x )
return total
return fn
This raises another question as to why string.split
is so much faster despite its memory usage.
回答5:
Here is my implementation, which is much, much faster and more complete than the other answers here. It has 4 separate subfunctions for different cases.
I'll just copy the docstring of the main str_split
function:
str_split(s, *delims, empty=None)
Split the string s
by the rest of the arguments, possibly omitting
empty parts (empty
keyword argument is responsible for that).
This is a generator function.
When only one delimiter is supplied, the string is simply split by it.
empty
is then True
by default.
str_split('[]aaa[][]bb[c', '[]')
-> '', 'aaa', '', 'bb[c'
str_split('[]aaa[][]bb[c', '[]', empty=False)
-> 'aaa', 'bb[c'
When multiple delimiters are supplied, the string is split by longest
possible sequences of those delimiters by default, or, if empty
is set to
True
, empty strings between the delimiters are also included. Note that
the delimiters in this case may only be single characters.
str_split('aaa, bb : c;', ' ', ',', ':', ';')
-> 'aaa', 'bb', 'c'
str_split('aaa, bb : c;', *' ,:;', empty=True)
-> 'aaa', '', 'bb', '', '', 'c', ''
When no delimiters are supplied, string.whitespace
is used, so the effect
is the same as str.split()
, except this function is a generator.
str_split('aaa\\t bb c \\n')
-> 'aaa', 'bb', 'c'
import string
def _str_split_chars(s, delims):
"Split the string `s` by characters contained in `delims`, including the \
empty parts between two consecutive delimiters"
start = 0
for i, c in enumerate(s):
if c in delims:
yield s[start:i]
start = i+1
yield s[start:]
def _str_split_chars_ne(s, delims):
"Split the string `s` by longest possible sequences of characters \
contained in `delims`"
start = 0
in_s = False
for i, c in enumerate(s):
if c in delims:
if in_s:
yield s[start:i]
in_s = False
else:
if not in_s:
in_s = True
start = i
if in_s:
yield s[start:]
def _str_split_word(s, delim):
"Split the string `s` by the string `delim`"
dlen = len(delim)
start = 0
try:
while True:
i = s.index(delim, start)
yield s[start:i]
start = i+dlen
except ValueError:
pass
yield s[start:]
def _str_split_word_ne(s, delim):
"Split the string `s` by the string `delim`, not including empty parts \
between two consecutive delimiters"
dlen = len(delim)
start = 0
try:
while True:
i = s.index(delim, start)
if start!=i:
yield s[start:i]
start = i+dlen
except ValueError:
pass
if start<len(s):
yield s[start:]
def str_split(s, *delims, empty=None):
"""\
Split the string `s` by the rest of the arguments, possibly omitting
empty parts (`empty` keyword argument is responsible for that).
This is a generator function.
When only one delimiter is supplied, the string is simply split by it.
`empty` is then `True` by default.
str_split('[]aaa[][]bb[c', '[]')
-> '', 'aaa', '', 'bb[c'
str_split('[]aaa[][]bb[c', '[]', empty=False)
-> 'aaa', 'bb[c'
When multiple delimiters are supplied, the string is split by longest
possible sequences of those delimiters by default, or, if `empty` is set to
`True`, empty strings between the delimiters are also included. Note that
the delimiters in this case may only be single characters.
str_split('aaa, bb : c;', ' ', ',', ':', ';')
-> 'aaa', 'bb', 'c'
str_split('aaa, bb : c;', *' ,:;', empty=True)
-> 'aaa', '', 'bb', '', '', 'c', ''
When no delimiters are supplied, `string.whitespace` is used, so the effect
is the same as `str.split()`, except this function is a generator.
str_split('aaa\\t bb c \\n')
-> 'aaa', 'bb', 'c'
"""
if len(delims)==1:
f = _str_split_word if empty is None or empty else _str_split_word_ne
return f(s, delims[0])
if len(delims)==0:
delims = string.whitespace
delims = set(delims) if len(delims)>=4 else ''.join(delims)
if any(len(d)>1 for d in delims):
raise ValueError("Only 1-character multiple delimiters are supported")
f = _str_split_chars if empty else _str_split_chars_ne
return f(s, delims)
This function works in Python 3, and an easy, though quite ugly, fix can be applied to make it work in both 2 and 3 versions. The first lines of the function should be changed to:
def str_split(s, *delims, **kwargs):
"""...docstring..."""
empty = kwargs.get('empty')
回答6:
No, but it should be easy enough to write one using itertools.takewhile().
EDIT:
Very simple, half-broken implementation:
import itertools
import string
def isplitwords(s):
i = iter(s)
while True:
r = []
for c in itertools.takewhile(lambda x: not x in string.whitespace, i):
r.append(c)
else:
if r:
yield ''.join(r)
continue
else:
raise StopIteration()
回答7:
I don't see any obvious benefit to a generator version of split()
. The generator object is going to have to contain the whole string to iterate over so you're not going to save any memory by having a generator.
If you wanted to write one it would be fairly easy though:
import string
def gsplit(s,sep=string.whitespace):
word = []
for c in s:
if c in sep:
if word:
yield "".join(word)
word = []
else:
word.append(c)
if word:
yield "".join(word)
回答8:
I wrote a version of @ninjagecko's answer that behaves more like string.split (i.e. whitespace delimited by default and you can specify a delimiter).
def isplit(string, delimiter = None):
"""Like string.split but returns an iterator (lazy)
Multiple character delimters are not handled.
"""
if delimiter is None:
# Whitespace delimited by default
delim = r"\s"
elif len(delimiter) != 1:
raise ValueError("Can only handle single character delimiters",
delimiter)
else:
# Escape, incase it's "\", "*" etc.
delim = re.escape(delimiter)
return (x.group(0) for x in re.finditer(r"[^{}]+".format(delim), string))
Here are the tests I used (in both python 3 and python 2):
# Wrapper to make it a list
def helper(*args, **kwargs):
return list(isplit(*args, **kwargs))
# Normal delimiters
assert helper("1,2,3", ",") == ["1", "2", "3"]
assert helper("1;2;3,", ";") == ["1", "2", "3,"]
assert helper("1;2 ;3, ", ";") == ["1", "2 ", "3, "]
# Whitespace
assert helper("1 2 3") == ["1", "2", "3"]
assert helper("1\t2\t3") == ["1", "2", "3"]
assert helper("1\t2 \t3") == ["1", "2", "3"]
assert helper("1\n2\n3") == ["1", "2", "3"]
# Surrounding whitespace dropped
assert helper(" 1 2 3 ") == ["1", "2", "3"]
# Regex special characters
assert helper(r"1\2\3", "\\") == ["1", "2", "3"]
assert helper(r"1*2*3", "*") == ["1", "2", "3"]
# No multi-char delimiters allowed
try:
helper(r"1,.2,.3", ",.")
assert False
except ValueError:
pass
python's regex module says that it does "the right thing" for unicode whitespace, but I haven't actually tested it.
Also available as a gist.
回答9:
If you would also like to be able to read an iterator (as well as return one) try this:
import itertools as it
def iter_split(string, sep=None):
sep = sep or ' '
groups = it.groupby(string, lambda s: s != sep)
return (''.join(g) for k, g in groups if k)
Usage
>>> list(iter_split(iter("Good evening, world!")))
['Good', 'evening,', 'world!']
回答10:
I wanted to show how to use the find_iter solution to return a generator for given delimiters and then use the pairwise recipe from itertools to build a previous next iteration which will get the actual words as in the original split method.
from more_itertools import pairwise
import re
string = "dasdha hasud hasuid hsuia dhsuai dhasiu dhaui d"
delimiter = " "
# split according to the given delimiter including segments beginning at the beginning and ending at the end
for prev, curr in pairwise(re.finditer("^|[{0}]+|$".format(delimiter), string)):
print(string[prev.end(): curr.start()])
note:
- I use prev & curr instead of prev & next because overriding next in python is a very bad idea
- This is quite efficient
回答11:
more_itertools.split_at offers an analog to str.split
for iterators.
>>> import more_itertools as mit
>>> list(mit.split_at("abcdcba", lambda x: x == "b"))
[['a'], ['c', 'd', 'c'], ['a']]
>>> "abcdcba".split("b")
['a', 'cdc', 'a']
more_itertools
is a third-party package.
回答12:
def split_generator(f,s):
"""
f is a string, s is the substring we split on.
This produces a generator rather than a possibly
memory intensive list.
"""
i=0
j=0
while j<len(f):
if i>=len(f):
yield f[j:]
j=i
elif f[i] != s:
i=i+1
else:
yield [f[j:i]]
j=i+1
i=i+1
回答13:
here is a simple response
def gen_str(some_string, sep):
j=0
guard = len(some_string)-1
for i,s in enumerate(some_string):
if s == sep:
yield some_string[j:i]
j=i+1
elif i!=guard:
continue
else:
yield some_string[j:]
来源:https://stackoverflow.com/questions/58922580/read-elements-one-by-one-from-one-line