问题
I want to remove duplicated values in each coulmn of an uneven data.table. For instance, if the original data is (the real data table has many columns and rows):
dt <- data.table(A = c("5p", "3p", "3p", "6y", NA), B = c("1c", "4r", "1c", NA, NA), C = c("4f", "5", "5", "5", "4m"))
> dt
A B C
1: 5p 1c 4f
2: 3p 4r 5
3: 3p 1c 5
4: 6y <NA> 5
5: <NA> <NA> 4m
after removal of duplicated values in each column it should look like this:
A B C
5p 1c 4f
3p 4r 5
NA NA NA
6y NA NA
NA NA 4m
I am trying a solution proposed in another thread using data.table. However, I only get the first duplicated value in each column replaced with "NA", but not the subsequents.
cols <- colnames(dt)
dt[, lapply(.SD, function(x) replace(x, anyDuplicated(x), NA)), .SDcols = cols]
> dt
A B C
1: 5p 1c 4f
2: 3p 4r 5
3: <NA> <NA> <NA>
4: 6y <NA> 5
5: <NA> <NA> 4m
How should I modify the code to get all duplicates replaced?
回答1:
You were very close. Instead of using anyDuplicated
, I used duplicated
like this:
dt[, lapply(.SD, function(x) ifelse(duplicated(x) == TRUE, NA, x))]
Try dt[, lapply(.SD, duplicated)]
to get an idea of what the ifelse
will do.
回答2:
I believe this would be the proper data.table
way of achieving this task:
cols <- colnames(dt)
dt[, (cols) := lapply(.SD, function(x) replace(x, duplicated(x), NA))]
A B C
1: 5p 1c 4f
2: 3p 4r 5
3: <NA> <NA> <NA>
4: 6y <NA> <NA>
5: <NA> <NA> 4m
Note:
.SD
defaults to all columns, so there in this case there is no need to specify the.SDcols
argument.- Using
:=
avoids copying the whole data.table.
来源:https://stackoverflow.com/questions/59771098/how-to-remove-duplicated-values-in-uneven-columns-of-a-data-table