问题
I am trying to find the kth smallest element of binary search tree and I have problems using recursion. I understand how to print the tree inorder/postorder etc. but I fail to return the rank of the element. Can someone point where I am making a mistake? In general, I am having hard time understanding recursion in trees.
Edit: this is an exercise, so I am not looking for using built-in functions. I have another solution where I keep track of number of left and right children as I insert nodes and that code is working fine. I am wondering if it is possible to do this using inorder traversal because it seems to be a simpler solution.
class BinaryTreeNode:
def __init__(self, data, left=None, right=None):
self.data = data
self.left = left
self.right = right
def traverseInOrder(root,order):
if root == None:
return
traverseInOrder(root.left,order+1)
print root.data,
print order
traverseInOrder(root.right,order)
"""
a
/ \
b c
/ \ / \
d e f g
/ \
h i
"""
h = BinaryTreeNode("h")
i = BinaryTreeNode("i")
d = BinaryTreeNode("d", h, i)
e = BinaryTreeNode("e")
f = BinaryTreeNode("f")
g = BinaryTreeNode("g")
b = BinaryTreeNode("b", d, e)
c = BinaryTreeNode("c", f, g)
a = BinaryTreeNode("a", b, c)
print traverseInOrder(a,0)
回答1:
If this is an academic exercise, make traverseInOrder (or similar method tailored to the purpose) return the number of children it visited. From there things get simpler.
If this isn't academic, have a look at http://stromberg.dnsalias.org/~dstromberg/datastructures/ - the dictionary-like objects are all trees, and support iterators - so finding the nth is a matter of zip(tree, range(n)).
回答2:
You could find the smallets element in the binary search tree first. Then from that element call a method to give you the next element k times.
For find_smallest_node
method, note that you can traverse all the nodes "in-order" until reach to smallest. But that approach takes O(n) time.
However, you do not need a recursion to find the smallest node, because in BST smallest node is simply the left most node, so you can traverse the nodes until finding a node that has no left child and it takes O(log n) time:
class BST(object):
def find_smallest_node(self):
if self.root == None:
return
walking_node = self.root
smallest_node = self.root
while walking_node != None:
if walking_node.data <= smallest_node.data:
smallest_node = walking_node
if walking_node.left != None:
walking_node = walking_node.left
elif walking_node.left == None:
walking_node = None
return smallest_node
def find_k_smallest(self, k):
k_smallest_node = self.find_smallest_node()
if k_smallest_node == None:
return
else:
k_smallest_data = k_smallest_node.data
count = 1
while count < k:
k_smallest_data = self.get_next(k_smallest_data)
count += 1
return k_smallest_data
def get_next (self, key):
...
It just requires to keep the parent of the nodes when inserting them to the tree.
class Node(object):
def __init__(self, data, left=None, right=None, parent=None):
self.data = data
self.right = right
self.left = left
self.parent = parent
An implementation of the bst class with the above methods and also def get_next (self, key)
function is here. The upper folder contains the test cases for it and it worked.
来源:https://stackoverflow.com/questions/21359873/in-order-bst-traversal-find