Which TensorFlow and CUDA version combinations are compatible?

微笑、不失礼 提交于 2019-11-26 03:37:53

Generally:

Check the CUDA version:

cat /usr/local/cuda/version.txt

and cuDNN version:

grep CUDNN_MAJOR -A 2 /usr/local/cuda/include/cudnn.h

and install a combination as given below in the images or here.

The following images and the link provide an overview of the officially supported/tested combinations of CUDA and TensorFlow on Linux, macOS and Windows:

Minor configurations:

Since the given specifications below in some cases might be too broad, here is one specific configuration that works:

  • tensorflow-gpu==1.12.0
  • cuda==9.0
  • cuDNN==7.1.4

The corresponding cudnn can be downloaded here.

(figures updated Jun 29, 2019)

Linux GPU

Linux

macOS GPU

macOS

(figure updated May 31, 2018)

Windows

The compatibility table given in https://www.tensorflow.org/install/source#tested_build_configurations does not contain specific minor versions for cuda and cuDNN. It is only generally listed as cuda=9 and cuDNN=7. However, if the specific versions are not met, there will be an error.

For tensorflow-gpu==1.12.0 and cuda==9.0, the compatible cuDNN version is 7.1.4, which can be downloaded from here after registration.

You can check your cuda version using
nvcc --version

cuDNN version using
cat /usr/include/cudnn.h | grep CUDNN_MAJOR -A 2

tensorflow-gpu version using
pip freeze | grep tensorflow-gpu

Working : tensorflow 1.13.1, CUDA 10, CUDNN 7.4.2, python 3.6 (does not work well with 3.7.. 3.7 has many bugs) For Windows 10

ED-DOUGHMI younes

You can use this configuration for cuda 10.0 (10.1 does not work as of 3/18), this runs for me:

  • tensorflow>=1.12.0
  • tensorflow_gpu>=1.4

Install version tensorflow gpu:

pip install tensorflow-gpu==1.4.0
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!