How does this code for delaunay triangulation work?

时间秒杀一切 提交于 2019-11-27 13:47:09

Looks like what is described here http://en.wikipedia.org/wiki/Delaunay_triangulation :

The problem of finding the Delaunay triangulation of a set of points in d-dimensional Euclidean space can be converted to the problem of finding the convex hull of a set of points in (d + 1)-dimensional space, by giving each point p an extra coordinate equal to |p|2, taking the bottom side of the convex hull, and mapping back to d-dimensional space by deleting the last coordinate.

In your example d is 2.

The vector (xn,yn,zn) is the cross product of the vectors (point i -> point j) and (point i -> point k) or in other words a vector perpendicular to the triangle (point i, point j, point k).

The calculation of flag checks whether the normal of this triangle points towards the negative z direction and whether all other points are on the side opposite to the normal of the triangle (opposite because the other points need to be above the triangle's plane because we're interested in the bottom side of the convex hull). If this is the case, the triangle (i,j,k) is part of the 3D convex hull and therefore the x and y components (the projection of the 3D triangle onto the x,y plane) is part of the (2D) Delaunay triangulation.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!