Efficient method to calculate the rank vector of a list in Python

人盡茶涼 提交于 2019-11-27 13:09:12

Using scipy, the function you are looking for is scipy.stats.rankdata :

In [13]: import scipy.stats as ss
In [19]: ss.rankdata([3, 1, 4, 15, 92])
Out[19]: array([ 2.,  1.,  3.,  4.,  5.])

In [20]: ss.rankdata([1, 2, 3, 3, 3, 4, 5])
Out[20]: array([ 1.,  2.,  4.,  4.,  4.,  6.,  7.])

The ranks start at 1, rather than 0 (as in your example), but then again, that's the way R's rank function works as well.

Here is a pure-python equivalent of scipy's rankdata function:

def rank_simple(vector):
    return sorted(range(len(vector)), key=vector.__getitem__)

def rankdata(a):
    n = len(a)
    ivec=rank_simple(a)
    svec=[a[rank] for rank in ivec]
    sumranks = 0
    dupcount = 0
    newarray = [0]*n
    for i in xrange(n):
        sumranks += i
        dupcount += 1
        if i==n-1 or svec[i] != svec[i+1]:
            averank = sumranks / float(dupcount) + 1
            for j in xrange(i-dupcount+1,i+1):
                newarray[ivec[j]] = averank
            sumranks = 0
            dupcount = 0
    return newarray

print(rankdata([3, 1, 4, 15, 92]))
# [2.0, 1.0, 3.0, 4.0, 5.0]
print(rankdata([1, 2, 3, 3, 3, 4, 5]))
# [1.0, 2.0, 4.0, 4.0, 4.0, 6.0, 7.0]
Yuvraj Singh

This is one of the functions that I wrote to calculate rank.

def calculate_rank(vector):
  a={}
  rank=1
  for num in sorted(vector):
    if num not in a:
      a[num]=rank
      rank=rank+1
  return[a[i] for i in vector]

input:

calculate_rank([1,3,4,8,7,5,4,6])

output:

[1, 2, 3, 7, 6, 4, 3, 5]

This doesn't give the exact result you specify, but perhaps it would be useful anyways. The following snippet gives the first index for each element, yielding a final rank vector of [0, 1, 2, 2, 2, 5, 6]

def rank_index(vector):
    return [vector.index(x) for x in sorted(range(n), key=vector.__getitem__)]

Your own testing would have to prove the efficiency of this.

There is a really nice module called Ranking http://pythonhosted.org/ranking/ with an easy to follow instruction page. To download, simply use easy_install ranking

Here is a small variation of unutbu's code, including an optional 'method' argument for the type of value of tied ranks.

def rank_simple(vector):
    return sorted(range(len(vector)), key=vector.__getitem__)

def rankdata(a, method='average'):
    n = len(a)
    ivec=rank_simple(a)
    svec=[a[rank] for rank in ivec]
    sumranks = 0
    dupcount = 0
    newarray = [0]*n
    for i in xrange(n):
        sumranks += i
        dupcount += 1
        if i==n-1 or svec[i] != svec[i+1]:
            for j in xrange(i-dupcount+1,i+1):
                if method=='average':
                    averank = sumranks / float(dupcount) + 1
                    newarray[ivec[j]] = averank
                elif method=='max':
                    newarray[ivec[j]] = i+1
                elif method=='min':
                    newarray[ivec[j]] = i+1 -dupcount+1
                else:
                    raise NameError('Unsupported method')

            sumranks = 0
            dupcount = 0


    return newarray
Jialiang Gu
[sorted(l).index(x) for x in l]

sorted(l) will give the sorted version index(x) will give the index in the sorted array

for example :

l = [-1, 3, 2, 0,0]
>>> [sorted(l).index(x) for x in l]
[0, 4, 3, 1, 1]

These codes give me a lot of inspiration, especially unutbu's code. However my needs are simpler, so I changed the code a little.

Hoping to help the guys with the same needs.

Here is the class to record the players' scores and ranks.

class Player():
    def __init__(self, s, r):
        self.score = s
        self.rank = r

Some data.

l = [Player(90,0),Player(95,0),Player(85,0), Player(90,0),Player(95,0)]

Here is the code for calculation:

l.sort(key=lambda x:x.score, reverse=True)    
l[0].rank = 1
dupcount = 0
prev = l[0]
for e in l[1:]:
    if e.score == prev.score:
        e.rank = prev.rank
        dupcount += 1
    else:
        e.rank = prev.rank + dupcount + 1
        dupcount = 0
        prev = e
import numpy as np

def rankVec(arg):
    p = np.unique(arg) #take unique value
    k = (-p).argsort().argsort() #sort based on arguments in ascending order
    dd = defaultdict(int)
    for i in xrange(np.shape(p)[0]):
        dd[p[i]] = k[i]
    return np.array([dd[x] for x in arg])

timecomplexity is 46.2us

So.. this is 2019, and I have no idea why nobody suggested the following:

# Python-only
def rank_list( x, break_ties=False ):
    n = len(x)
    t = list(range(n))
    s = sorted( t, key=x.__getitem__ )

    if not break_ties:
        for k in range(n-1):
            t[k+1] = t[k] + (x[s[k+1]] != x[s[k]])

    r = s.copy()
    for i,k in enumerate(s):
        r[k] = t[i]

    return r

# Using Numpy, see also: np.argsort
def rank_vec( x, break_ties=False ):
    n = len(x)
    t = np.arange(n)
    s = sorted( t, key=x.__getitem__ )

    if not break_ties:
        t[1:] = np.cumsum(x[s[1:]] != x[s[:-1]])

    r = t.copy()
    np.put( r, s, t )
    return r

This approach has linear runtime complexity after the initial sort, it only stores 2 arrays of indices, and does not require values to be hashable (only pairwise comparison needed).

AFAICT, this is better than other approaches suggested so far:

  • @unutbu's approach is essentially similar, but (I would argue) too complicated for what the OP asked;
  • All suggestions using .index() are terrible, with a runtime complexity of N^2;
  • @Yuvraj Singh improves slightly upon the .index() search using a dictionary, however with search and insert operations at each iteration, this is still highly inefficient both in time (NlogN) and space, and it also requires the values to be hashable.
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!