Task not serializable Flink

浪子不回头ぞ 提交于 2020-01-14 10:39:33

问题


I am trying to do the pagerank Basic example in flink with little bit of modification(only in reading the input file, everything else is the same) i am getting the error as Task not serializable and below is the part of the output error

atorg.apache.flink.api.scala.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:179) at org.apache.flink.api.scala.ClosureCleaner$.clean(ClosureCleaner.scala:171)

Below is my code

object hpdb {

  def main(args: Array[String]) {

    val env = ExecutionEnvironment.getExecutionEnvironment

    val maxIterations = 10000

    val DAMPENING_FACTOR: Double = 0.85

    val EPSILON: Double = 0.0001

    val outpath = "/home/vinoth/bigdata/assign10/pagerank.csv"

    val links = env.readCsvFile[Tuple2[Long,Long]]("/home/vinoth/bigdata/assign10/ppi.csv",
                fieldDelimiter = "\t", includedFields = Array(1,4)).as('sourceId,'targetId).toDataSet[Link]//source and target

    val pages = env.readCsvFile[Tuple1[Long]]("/home/vinoth/bigdata/assign10/ppi.csv",
      fieldDelimiter = "\t", includedFields = Array(1)).as('pageId).toDataSet[Id]//Pageid

    val noOfPages = pages.count()

    val pagesWithRanks = pages.map(p => Page(p.pageId, 1.0 / noOfPages))

    val adjacencyLists = links
      // initialize lists ._1 is the source id and ._2 is the traget id
      .map(e => AdjacencyList(e.sourceId, Array(e.targetId)))
      // concatenate lists
      .groupBy("sourceId").reduce {
      (l1, l2) => AdjacencyList(l1.sourceId, l1.targetIds ++ l2.targetIds)
    }

    // start iteration

    val finalRanks = pagesWithRanks.iterateWithTermination(maxIterations) {
     // **//the output shows error here**     
     currentRanks =>
        val newRanks = currentRanks
          // distribute ranks to target pages
          .join(adjacencyLists).where("pageId").equalTo("sourceId") {
          (page, adjacent, out: Collector[Page]) =>
            for (targetId <- adjacent.targetIds) {
              out.collect(Page(targetId, page.rank / adjacent.targetIds.length))
            }
        }

          // collect ranks and sum them up

          .groupBy("pageId").aggregate(SUM, "rank")
          // apply dampening factor
         //**//the output shows error here** 
           .map { p =>
          Page(p.pageId, (p.rank * DAMPENING_FACTOR) + ((1 - DAMPENING_FACTOR) / pages.count()))
        }

        // terminate if no rank update was significant
        val termination = currentRanks.join(newRanks).where("pageId").equalTo("pageId") {
          (current, next, out: Collector[Int]) =>
            // check for significant update
            if (math.abs(current.rank - next.rank) > EPSILON) out.collect(1)
        }

        (newRanks, termination)
    }

    val result = finalRanks

    // emit result
    result.writeAsCsv(outpath, "\n", " ")

    env.execute()

    }
}

Any help in the right direction is highly appreciated? Thank you.


回答1:


The problem is that you reference the DataSet pages from within a MapFunction. This is not possible, since a DataSet is only the logical representation of a data flow and cannot be accessed at runtime.

What you have to do to solve this problem is to assign the val pagesCount = pages.count value to a variable pagesCount and refer to this variable in your MapFunction.

What pages.count actually does, is to trigger the execution of the data flow graph, so that the number of elements in pages can be counted. The result is then returned to your program.



来源:https://stackoverflow.com/questions/31315478/task-not-serializable-flink

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!