水题,就当复习马拉车了;
设\(vis_i\)表示前缀\(i\)能否变换成功;
如果前缀\(i\)进行一次对称变换,长度为\(i+i-1\);当\(i+i-1>n\)的时候,我们只需要判断回文半径是否不小于\(n-i\)即可;
当\(i=i-1\leq n\)时,如果进行变换后得到的是前缀\(i+i-1\),那么\(vis_i=vis_{i+i-1}\),否则\(vis_i=0\);
于是我们只要判断\(i\)进行对称变换后是否为\(i+i-1\),这相当于问\(i\)的回文半径是否为\(i-1\),马拉车即可;
代码
#include<bits/stdc++.h> #define re register #define min(a,b) ((a)<(b)?(a):(b)) const int maxn=1e6+5;int n; int vis[maxn],r[maxn];char S[maxn]; int main() { int T;scanf("%d",&T); for(;T;--T) { scanf("%s",S+1);n=strlen(S+1);vis[n]=1; int R=1,mid=1;for(re int i=1;i<=n;i++)r[i]=0; for(re int i=1;i<=n;i++) { if(i<=R)r[i]=min(R-i,r[(mid<<1)-i]); for(re int j=r[i]+1;j<=i&&j<=n&&S[i+j]==S[i-j];++j)r[i]=j; if(i+r[i]>R)R=i+r[i],mid=i; } for(re int i=n-1;i>1;i--) { if(i+i-1>n) {vis[i]=(r[i]>=n-i);continue;} vis[i]=(r[i]>=i-1)&vis[i+i-1]; } for(re int i=1;i<=n;i++)if(vis[i])printf("%d%c",i,(i==n)?'\n':' '),vis[i]=0; } } //g++ lg5446.cpp -o lg5446 -O2 -lm -std=c++11
来源:https://www.cnblogs.com/asuldb/p/12188233.html