naive的动态规划套路总结

十年热恋 提交于 2020-01-07 01:24:59

\(O(nlogn)\)求长度为\(n\)的数列的\(LIS\)

int LIS(int *a, int n)
{
    
    int *d = new int[n + 5];
    int *g = new int[n + 5];
    for(int i=1; i<=n; ++i) g[i] = INF; // INF = 2147483647
    for(int i=1; i<=n; ++i)
    {
        int k = lower_bound(g+1, g+1+n, a[i]) - g;
        d[i] = k;
        g[k] = a[i];
    }
    
    int ret = 0;
    for(int i=1; i<=n; ++i) ret = max(ret, d[i]);
    return ret;
    
}

\[d(i,j) = min { d(i+1,j) ~ d(j,j), ... , d(i,j-1) ~ d(i,i) , 0 } \]

中的某些部分保存一下, 可以优化时间复杂度

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!