ROS机器人026-机器人自主巡查Python程序&重新建立仿真地图文件

為{幸葍}努か 提交于 2020-01-07 00:35:17

一、查看机器人巡查Python源程序

#!/usr/bin/env python 
# -*- coding: utf-8 -*-
 
import roslib;
import rospy  
import actionlib  
from actionlib_msgs.msg import *  
from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist  
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal  
from random import sample  
from math import pow, sqrt  

class NavTest():  
    def __init__(self):  
        rospy.init_node('exploring_slam', anonymous=True)  
        rospy.on_shutdown(self.shutdown)  

        # 在每个目标位置暂停的时间 (单位:s)
        self.rest_time = rospy.get_param("~rest_time", 2)  

        # 是否仿真?  
        self.fake_test = rospy.get_param("~fake_test", True)  

        # 到达目标的状态  
        goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',   
                       'SUCCEEDED', 'ABORTED', 'REJECTED',  
                       'PREEMPTING', 'RECALLING', 'RECALLED',  
                       'LOST']  
 
        # 设置目标点的位置  
        # 在rviz中点击 2D Nav Goal 按键,然后单击地图中一点  
        # 在终端中就会看到该点的坐标信息  
        locations = dict()  

        locations['1'] = Pose(Point(-0.775, -0.654, 0.030), Quaternion(0.009, 0.000, 0.999, 0.028))  
        locations['2'] = Pose(Point(-7.364, -1.137, 0.030), Quaternion(-0.006, -0.006, 0.665, -0.746))  
        locations['3'] = Pose(Point(-7.282, -6.668, 0.030), Quaternion(-0.001, -0.009, 0.137, -0.990))  
        locations['4'] = Pose(Point(-0.030, -7.551, 0.030), Quaternion(-0.009, 0.000, 0.998, 0.046))  
        locations['5'] = Pose(Point(-6.787, -6.917, 0.030), Quaternion(-0.006, 0.006, 0.716, 0.697))  
        locations['6'] = Pose(Point(0.0615, -1.169, 0.030),   Quaternion(-0.009, 0.000, 0.997, 0.064))  

        # 发布控制机器人的消息  
        self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)  

        # 订阅move_base服务器的消息  
        self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)  

        rospy.loginfo("Waiting for move_base action server...")  

        # 60s等待时间限制  
        self.move_base.wait_for_server(rospy.Duration(60))  
        rospy.loginfo("Connected to move base server")  
  
        # 保存机器人的在rviz中的初始位置  
        initial_pose = PoseWithCovarianceStamped()  

        # 保存成功率、运行时间、和距离的变量  
        n_locations = len(locations)  
        n_goals = 0  
        n_successes = 0  
        i = n_locations  
        distance_traveled = 0  
        start_time = rospy.Time.now()  
        running_time = 0  
        location = ""  
        last_location = ""    
 
        # 确保有初始位置  
        while initial_pose.header.stamp == "":  
            rospy.sleep(1)  

        rospy.loginfo("Starting navigation test")  

        # 开始主循环,随机导航  
        while not rospy.is_shutdown():  
            # 如果已经走完了所有点,再重新开始排序  
            if i == n_locations:  
                i = 0  
                sequence = sample(locations, n_locations)  
 
                # 如果最后一个点和第一个点相同,则跳过  
                if sequence[0] == last_location:  
                    i = 1  

            # 在当前的排序中获取下一个目标点  
            location = sequence[i]  

            # 跟踪行驶距离  
            # 使用更新的初始位置  
            if initial_pose.header.stamp == "":  
                distance = sqrt(pow(locations[location].position.x -   
                                    locations[last_location].position.x, 2) +  
                                pow(locations[location].position.y -   
                                    locations[last_location].position.y, 2))  
            else:  
                rospy.loginfo("Updating current pose.")  
                distance = sqrt(pow(locations[location].position.x -   
                                    initial_pose.pose.pose.position.x, 2) +  
                                pow(locations[location].position.y -   
                                    initial_pose.pose.pose.position.y, 2))  
                initial_pose.header.stamp = ""  

            # 存储上一次的位置,计算距离  
            last_location = location  

            # 计数器加1  
            i += 1  
            n_goals += 1  

            # 设定下一个目标点  
            self.goal = MoveBaseGoal()  
            self.goal.target_pose.pose = locations[location]  
            self.goal.target_pose.header.frame_id = 'map'  
            self.goal.target_pose.header.stamp = rospy.Time.now()  

            # 让用户知道下一个位置  
            rospy.loginfo("Going to: " + str(location))  

            # 向下一个位置进发  
            self.move_base.send_goal(self.goal)  

            # 五分钟时间限制  
            finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))   

            # 查看是否成功到达  
            if not finished_within_time:  
                self.move_base.cancel_goal()  
                rospy.loginfo("Timed out achieving goal")  
            else:  
                state = self.move_base.get_state()  
                if state == GoalStatus.SUCCEEDED:  
                    rospy.loginfo("Goal succeeded!")  
                    n_successes += 1  
                    distance_traveled += distance  
                    rospy.loginfo("State:" + str(state))  
                else:  
                  rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))  

            # 运行所用时间  
            running_time = rospy.Time.now() - start_time  
            running_time = running_time.secs / 60.0  

            # 输出本次导航的所有信息  
            rospy.loginfo("Success so far: " + str(n_successes) + "/" +   
                          str(n_goals) + " = " +   
                          str(100 * n_successes/n_goals) + "%")  

            rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +   
                          " min Distance: " + str(trunc(distance_traveled, 1)) + " m")  

            rospy.sleep(self.rest_time)  

    def update_initial_pose(self, initial_pose):  
        self.initial_pose = initial_pose  

    def shutdown(self):  
        rospy.loginfo("Stopping the robot...")  
        self.move_base.cancel_goal()  
        rospy.sleep(2)  
        self.cmd_vel_pub.publish(Twist())  
        rospy.sleep(1)  

def trunc(f, n):  
    slen = len('%.*f' % (n, f))  

    return float(str(f)[:slen])  

if __name__ == '__main__':  
    try:  
        NavTest()  
        rospy.spin()  

    except rospy.ROSInterruptException:  
        rospy.loginfo("Exploring SLAM finished.")

二、发现建立的room2.world地图

必须和新建立的机器人模型一起建立
新建地图文件目录
nvidia@tegra-ubuntu:~/catkin_ws/src/mbot_gazebo/worlds$
room2.world
新建建立地图launch文件
vim 3view_mbot_gazebo_empty_world.launch

<launch>

    <!-- 设置launch文件的参数 -->
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>

    <!-- 运行gazebo仿真环境 -->
    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="debug" value="$(arg debug)" />
        <arg name="gui" value="$(arg gui)" />
        <arg name="paused" value="$(arg paused)"/>
        <arg name="use_sim_time" value="$(arg use_sim_time)"/>
        <arg name="headless" value="$(arg headless)"/>
    </include>

    <!-- 加载机器人模型描述参数 -->
    <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find mbot_description)/urdf/xacro/gazebo/mbot_with_2laserandcamera_gazebo.xacro'" /> 

    <!-- 运行joint_state_publisher节点,发布机器人的关节状态  -->
    <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" ></node> 

    <!-- 运行robot_state_publisher节点,发布tf  -->
    <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"  output="screen" >
        <param name="publish_frequency" type="double" value="50.0" />
    </node>

    <!-- 在gazebo中加载机器人模型-->
    <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model mbot -param robot_description"/> 

</launch>

在这里插入图片描述

三、新建机器人启动文件

nvidia@tegra-ubuntu:~/catkin_ws/src/mbot_gazebo/launch$
roslaunch mbot_gazebo nav_gmapping_view_mbot_gazebolaserandcamera_room2.launch

<launch>
    <!-- 设置launch文件的参数 -->
    <arg name="world_name" value="$(find mbot_gazebo)/worlds/room2.world"/>
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>
    <!-- 运行gazebo仿真环境 -->
    <include file="$(find gazebo_ros)/launch/empty_world.launch">
        <arg name="world_name" value="$(arg world_name)" />
        <arg name="debug" value="$(arg debug)" />
        <arg name="gui" value="$(arg gui)" />
        <arg name="paused" value="$(arg paused)"/>
        <arg name="use_sim_time" value="$(arg use_sim_time)"/>
        <arg name="headless" value="$(arg headless)"/>
    </include>

    <!-- 加载机器人模型描述参数 -->
    <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find mbot_description)/urdf/xacro/gazebo/mbot_with_2laserandcamera_gazebo.xacro'" />

    <!-- 运行joint_state_publisher节点,发布机器人的关节状态  -->
    <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" ></node>

    <!-- 运行robot_state_publisher节点,发布tf  -->
    <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"  output="screen" >
        <param name="publish_frequency" type="double" value="50.0" />
    </node>

    <!-- 在gazebo中加载机器人模型-->
    <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model mbot -param robot_description"/>
    <include file="$(find mbot_navigation)/launch/gmapping2.launch"/>

    <!-- 运行move_base节点 -->
    <include file="$(find mbot_navigation)/launch/move_base.launch" />

    <!-- 运行rviz -->
    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find mbot_navigation)/rviz/nav.rviz"/>
</launch>

四、执行机器人巡查命令

nvidia@tegra-ubuntu:~/catkin_ws/src/mbot_navigation/scripts$
rosrun mbot_navigation exploring_slam_room2.py

在这里插入图片描述
执行命令 按照键盘控制机器人先建立地图,然后控制机器人走的每个点,收集机器人的位置和角度数据,采集5个坐标点和方位点即可。
**nvidia@tegra-ubuntu:~/catkin_ws/src/mbot_navigation/scripts$ **
rostopic echo /odom

 locations['1'] = Pose(Point(-0.775, -0.654, 0.030), Quaternion(0.009, 0.000, 0.999, 0.028))  
 locations['2'] = Pose(Point(-7.364, -1.137, 0.030), Quaternion(-0.006, -0.006, 0.665, -0.746))  
 locations['3'] = Pose(Point(-7.282, -6.668, 0.030), Quaternion(-0.001, -0.009, 0.137, -0.990))  
 locations['4'] = Pose(Point(-0.030, -7.551, 0.030), Quaternion(-0.009, 0.000, 0.998, 0.046))  
 locations['5'] = Pose(Point(-6.787, -6.917, 0.030), Quaternion(-0.006, 0.006, 0.716, 0.697))  
 locations['6'] = Pose(Point(0.0615, -1.169, 0.030),   Quaternion(-0.009, 0.000, 0.997, 0.064))  

完成地图建立命名:

roslaunch mbot_gazebo nav_gmapping_view_mbot_gazebolaserandcamera_room2.launch
rosrun mbot_navigation exploring_slam_room2.py
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!