Conditional keyed join/update _and_ update a flag column for matches

我的未来我决定 提交于 2020-01-03 19:01:10

问题


This is very similar to the question @DavidArenburg asked about conditional keyed joins, with an additional bugbear that I can't seem to suss out.

Basically, in addition to a conditional join, I want to define a flag saying at which step of the matching process that the match occurred; my problem is that I can only get the flag to define for all values, not the matched values.

Here's what I hope is a minimal working example:

DT = data.table(
  name = c("Joe", "Joe", "Jim", "Carol", "Joe",
           "Carol", "Ann", "Ann", "Beth", "Joe", "Joe"),
  surname = c("Smith", "Smith", "Jones",
              "Clymer", "Smith", "Klein", "Cotter",
              "Cotter", "Brown", "Smith", "Smith"),
  maiden_name = c("", "", "", "", "", "Clymer",
                  "", "", "", "", ""),
  id = c(1, 1:3, rep(NA, 7)),
  year = rep(1:4, c(4, 3, 2, 2)),
  flag1 = NA, flag2 = NA, key = "year"
)

DT
#      name surname maiden_name id year flag1 flag2
#  1:   Joe   Smith              1    1 FALSE FALSE
#  2:   Joe   Smith              1    1 FALSE FALSE
#  3:   Jim   Jones              2    1 FALSE FALSE
#  4: Carol  Clymer              3    1 FALSE FALSE
#  5:   Joe   Smith             NA    2 FALSE FALSE
#  6: Carol   Klein      Clymer NA    2 FALSE FALSE
#  7:   Ann  Cotter             NA    2 FALSE FALSE
#  8:   Ann  Cotter             NA    3 FALSE FALSE
#  9:  Beth   Brown             NA    3 FALSE FALSE
# 10:   Joe   Smith             NA    4 FALSE FALSE
# 11:   Joe   Smith             NA    4 FALSE FALSE

My approach is, for each year, to first try and match on first name/last name from a prior year; if that fails, then try to match on first name/maiden name. I want to define flag1 to denote an exact match and flag2 to denote a marriage.

for (yr in 2:4) {

  #which ids have we hit so far?
  existing_ids = DT[.(yr), unique(id)]

  #find people in prior years appearing to
  #  correspond to those people
  unmatched = 
    DT[.(1:(yr - 1))][!id %in% existing_ids, .SD[.N], by = id]
  setkey(unmatched, name, surname)

  #merge a la Arun, define flag1
  setkey(DT, name, surname)
  DT[year == yr, c("id", "flag1") := unmatched[.SD, .(id, TRUE)]]
  setkey(DT, year)

  #repeat, this time keying on name/maiden_name
  existing_ids = DT[.(yr), unique(id)]
  unmatched = 
    DT[.(1:(yr - 1))][!id %in% existing_ids, .SD[.N],by=id]
  setkey(unmatched, name, surname)

  #now define flag2 = TRUE
  setkey(DT, name, maiden_name)
  DT[year==yr & is.na(id), c("id", "flag2") := unmatched[.SD, .(id, TRUE)]]
  setkey(DT, year)

  #this is messy, but I'm trying to increment id
  #  for "new" individuals
  setkey(DT, name, surname, maiden_name)
  DT[year == yr & is.na(id),
     id := unique(
       DT[year == yr & is.na(id)], 
       by = c("name", "surname", "maiden_name")
     )[ , count := .I][.SD, count] + DT[ , max(id, na.rm = TRUE)]
     ]

  #re-sort by year at the end    
  setkey(DT, year)    
}

I was hoping that by including the TRUE value in the j argument while I define id, only the matched names (e.g., Joe at the first step) would have their flag updated to TRUE, but this isn't the case--they are all updated:

DT[]
#      name surname maiden_name id year flag1 flag2
#  1: Carol  Clymer              3    1 FALSE FALSE
#  2:   Jim   Jones              2    1 FALSE FALSE
#  3:   Joe   Smith              1    1 FALSE FALSE
#  4:   Joe   Smith              1    1 FALSE FALSE
#  5:   Ann  Cotter              4    2  TRUE  TRUE
#  6: Carol   Klein      Clymer  3    2  TRUE  TRUE
#  7:   Joe   Smith              1    2  TRUE FALSE
#  8:   Ann  Cotter              4    3  TRUE FALSE
#  9:  Beth   Brown              5    3  TRUE  TRUE
# 10:   Joe   Smith              1    4  TRUE FALSE
# 11:   Joe   Smith              1    4  TRUE FALSE

Is there any way to update only the matched rows' flag values? Ideal output is as follows:

DT[]
#      name surname maiden_name id year flag1 flag2
#  1: Carol  Clymer              3    1 FALSE FALSE
#  2:   Jim   Jones              2    1 FALSE FALSE
#  3:   Joe   Smith              1    1 FALSE FALSE
#  4:   Joe   Smith              1    1 FALSE FALSE
#  5:   Ann  Cotter              4    2 FALSE FALSE
#  6: Carol   Klein      Clymer  3    2 FALSE  TRUE
#  7:   Joe   Smith              1    2  TRUE FALSE
#  8:   Ann  Cotter              4    3  TRUE FALSE
#  9:  Beth   Brown              5    3 FALSE FALSE
# 10:   Joe   Smith              1    4  TRUE FALSE
# 11:   Joe   Smith              1    4  TRUE FALSE

回答1:


I think flags are messy here; better to simply identify the source of the id:

dt[,c("flag1","flag2"):=NULL]

# create name -> id table
namemap <- unique(dt[,.(maiden_name,id,year),keyby=.(name,surname)],by=NULL)

# tag original ids
namemap[!is.na(id),src:="original"]

# carried over from earlier years
namemap[, has_oid := any(!is.na(id)), by=key(namemap)]
namemap[(has_oid),`:=`(
  id  = id[!is.na(id)],
  src = ifelse(is.na(id), "history", src)
),by=.(name,surname)]

# carry over for surname changes on marriage
namemap[maiden_name!="",`:=`(
  id  = namemap[.BY]$id,
  src = "maiden" 
),by=.(name,maiden_name)]

# create new ids where none exists
namemap[is.na(id),`:=`(
  id  = .GRP+max(dt$id,na.rm=TRUE),
  src = "new"
),by=.(name,surname)]

# copy back to the original table
setkey(dt,name,surname,year)
setkey(namemap,name,surname,year)
dt[namemap,`:=`(
  id  = i.id,
  src = src
)]

which gives

     name surname maiden_name id year      src
 1:   Ann  Cotter              4    2      new
 2:   Ann  Cotter              4    3      new
 3:  Beth   Brown              5    3      new
 4: Carol  Clymer              3    1 original
 5: Carol   Klein      Clymer  3    2   maiden
 6:   Jim   Jones              2    1 original
 7:   Joe   Smith              1    1 original
 8:   Joe   Smith              1    1 original
 9:   Joe   Smith              1    2  history
10:   Joe   Smith              1    4  history
11:   Joe   Smith              1    4  history

The original ordering of the data is lost, but it is easy to recover if you want it.




回答2:


The key (no pun intended) I think was to realize that the merge was returning NA for the missed IDs, so I should add the flag to unmatched at each step, e.g., at step 1:

unmatched <- dt[.(1:(yr - 1L))
                ][!id %in% existing_ids,
                  .SD[.N], by = id][ , flag1 := TRUE]
dt[year == yr, c("id", "flag1") := 
     unmatched[.SD, .(id, flag1), on = "name,surname"]]

In the end, this produces:

> dt[ ]
     name surname maiden_name id year flag1 flag2
 1: Carol  Clymer              3    1 FALSE FALSE
 2:   Jim   Jones              2    1 FALSE FALSE
 3:   Joe   Smith              1    1 FALSE FALSE
 4:   Joe   Smith              1    1 FALSE FALSE
 5:   Ann  Cotter              4    2    NA    NA
 6: Carol   Klein      Clymer  3    2    NA  TRUE
 7:   Joe   Smith              1    2  TRUE FALSE
 8:   Ann  Cotter              4    3  TRUE FALSE
 9:  Beth   Brown              5    3    NA    NA
10:   Joe   Smith              1    4  TRUE FALSE
11:   Joe   Smith              1    4  TRUE FALSE

One problem remaining is that some flags that should be F have reset to NA; would be nice to be able to set nomatch=F, but I'm not too worried about this side effect--the key for me is knowing when each flag is T.



来源:https://stackoverflow.com/questions/31329939/conditional-keyed-join-update-and-update-a-flag-column-for-matches

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!