问题
I'm trying to understand the <=<
function:
ghci> :t (<=<)
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
As I understand it, I give it 2 functions and an a
, and then I'll get an m c
.
So, why doesn't this example compile?
import Control.Monad
f :: a -> Maybe a
f = \x -> Just x
g :: a -> [a]
g = \x -> [x]
foo :: Monad m => a -> m c
foo x = f <=< g x
For foo 3
, I would expect Just 3
as a result.
But I get this error:
File.hs:10:15:
Couldn't match expected type `a0 -> Maybe c0'
with actual type `[a]'
In the return type of a call of `g'
Probable cause: `g' is applied to too many arguments
In the second argument of `(<=<)', namely `g x'
In the expression: f <=< g x Failed, modules loaded: none.
回答1:
There are two errors here.
First, (<=<)
only composes monadic functions if they share the same monad. In other words, you can use it to compose two Maybe
functions:
(<=<) :: (b -> Maybe c) -> (a -> Maybe b) -> (a -> Maybe c)
... or two list functions:
(<=<) :: (b -> [c]) -> (a -> [b]) -> (a -> [c])
... but you cannot compose a list function and maybe function this way. The reason for this is that when you have a type signature like this:
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
... the compiler will ensure that all the m
s must match.
The second error is that you forgot to parenthesize your composition. What you probably intended was this:
(f <=< g) x
... if you omit the parentheses the compiler interprets it like this:
f <=< (g x)
An easy way to fix your function is just to define a helper function that converts Maybe
s to lists:
maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]
This function actually has the following two nice properties:
maybeToList . return = return
maybeToList . (f <=< g) = (maybeToList . f) <=< (maybeToList . g)
... which are functor laws if you treat (maybeToList .)
as analogous to fmap
and treat (<=<)
as analogous to (.)
and return
as analogous to id
.
Then the solution becomes:
(maybeToList . f <=< g) x
回答2:
Note that, in
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
m
is static -- You're trying to substitute both []
and Maybe
for m
in the definition -- that won't type check.
You can use <=<
to compose functions of the form a -> m b
where m
is a single monad. Note that you can use different type arguments though, you don't need to be constrained to the polymorphic a
.
Here's an example of using this pattern constrained to the list monad:
f :: Int -> [Int]
f x = [x, x^2]
g :: Int -> [String]
g 0 = []
g x = [show x]
λ> :t g <=< f
g <=< f :: Int -> [String]
λ> g <=< f $ 10
["10","100"]
回答3:
You can't mix monads together. When you see the signature
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
The Monad m
is only a single Monad, not two different ones. If it were, the signature would be something like
(<=<) :: (Monad m1, Monad m2) => (b -> m2 c) -> (a -> m1 b) -> a -> m2 c
But this is not the case, and in fact would not really be possible in general. You can do something like
f :: Int -> Maybe Int
f 0 = Just 0
f _ = Nothing
g :: Int -> Maybe Int
g x = if even x then Just x else Nothing
h :: Int -> Maybe Int
h = f <=< g
来源:https://stackoverflow.com/questions/25560448/composing-monadic-functions-with