问题
I would like a list of 2d NumPy arrays (x,y) , where each x is in {-5, -4.5, -4, -3.5, ..., 3.5, 4, 4.5, 5} and the same for y.
I could do
x = np.arange(-5, 5.1, 0.5)
y = np.arange(-5, 5.1, 0.5)
and then iterate through all possible pairs, but I'm sure there's a nicer way...
I would like something back that looks like:
[[-5, -5],
[-5, -4.5],
[-5, -4],
...
[5, 5]]
but the order does not matter.
回答1:
You can use np.mgrid for this, it's often more convenient than np.meshgrid because it creates the arrays in one step:
import numpy as np
X,Y = np.mgrid[-5:5.1:0.5, -5:5.1:0.5]
For linspace-like functionality, replace the step (i.e. 0.5
) with a complex number whose magnitude specifies the number of points you want in the series. Using this syntax, the same arrays as above are specified as:
X, Y = np.mgrid[-5:5:21j, -5:5:21j]
You can then create your pairs as:
xy = np.vstack((X.flatten(), Y.flatten())).T
As @ali_m suggested, this can all be done in one line:
xy = np.mgrid[-5:5.1:0.5, -5:5.1:0.5].reshape(2,-1).T
Best of luck!
回答2:
I think you want np.meshgrid:
Return coordinate matrices from coordinate vectors.
Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn.
import numpy as np
x = np.arange(-5, 5.1, 0.5)
y = np.arange(-5, 5.1, 0.5)
X,Y = np.meshgrid(x,y)
you can convert that to your desired output with
XY=np.array([X.flatten(),Y.flatten()]).T
print XY
array([[-5. , -5. ],
[-4.5, -5. ],
[-4. , -5. ],
[-3.5, -5. ],
[-3. , -5. ],
[-2.5, -5. ],
....
[ 3. , 5. ],
[ 3.5, 5. ],
[ 4. , 5. ],
[ 4.5, 5. ],
[ 5. , 5. ]])
回答3:
This is just what you are looking for:
matr = np.linspace((1,2),(10,20),10)
This means:
For the first column; from 1 of (1,2) to 10 of (10,20), put the increasing 10 numbers.
For the second column; from 2 of (1,2) to 20 of (10,20), put the incresing 10 numbers.
And the result will be:
[[ 1. 2.]
[ 2. 4.]
[ 3. 6.]
[ 4. 8.]
[ 5. 10.]
[ 6. 12.]
[ 7. 14.]
[ 8. 16.]
[ 9. 18.]
[10. 20.]]
You may also keep only one column's values increasing, for example, if you say that:
matr = np.linspace((1,2),(1,20),10)
The first column will be from 1 of (1,2) to 1 of (1,20) for 10 times which means that it will stay as 1 and the result will be:
[[ 1. 2.]
[ 1. 4.]
[ 1. 6.]
[ 1. 8.]
[ 1. 10.]
[ 1. 12.]
[ 1. 14.]
[ 1. 16.]
[ 1. 18.]
[ 1. 20.]]
回答4:
We can use arrange function as:
z1 = np.array([np.array(np.arange(1,5)),np.array(np.arange(1,5))])
print(z1)
o/p=> [[1 2 3 4]
[1 2 3 4]]
回答5:
If you just want to iterate through pairs (and not do calculations on the whole set of points at once), you may be best served by itertools.product
to iterate through all possible pairs:
import itertools
for (xi, yi) in itertools.product(x, y):
print(xi, yi)
This avoids generating large matrices via meshgrid
.
回答6:
Not sure if I understand the question - to make a list of 2-element NumPy arrays, this works:
import numpy as np
x = np.arange(-5, 5.1, 0.5)
X, Y = np.meshgrid(x, x)
Liszt = [np.array(thing) for thing in zip(X.flatten(), Y.flatten())] # for python 2.7
zip
gives you a list of tuples, and the list comprehension does the rest.
回答7:
Based on this example, you can make any dim you want
def linspace3D(point1,point2,length):
v1 = np.linspace(point1[0],point2[0],length)
v2 = np.linspace(point1[1],point2[1],length)
v3 = np.linspace(point1[2],point2[2],length)
line = np.zeros(shape=[length,3])
line[:,0]=v1
line[:,1]=v2
line[:,2]=v3
return line
来源:https://stackoverflow.com/questions/32208359/is-there-a-multi-dimensional-version-of-arange-linspace-in-numpy