How can I get the depth of a multidimensional std::vector at compile time?

こ雲淡風輕ζ 提交于 2020-01-01 01:11:11

问题


I have a function that takes a multidimensional std::vector and requires the depth (or the number of dimensions) to be passed in as a template parameter. Instead of hardcoding this value I would like to write a constexpr function that will take the std::vector and return the depth as an unsigned integer value.

For example:

std::vector<std::vector<std::vector<int>>> v =
{
    { { 0, 1}, { 2, 3 } },
    { { 4, 5}, { 6, 7 } },
};

// Returns 3
size_t depth = GetDepth(v);

This needs to be done at compile time though because this depth will be passed to the template function as a template parameter:

// Same as calling foo<3>(v);
foo<GetDepth(v)>(v);

Is there any way to do this?


回答1:


A classic templating problem. Here's a simple solution like how the C++ standard library does. The basic idea is to have a recursive template that will count one by one each dimension, with a base case of 0 for any type that is not a vector.

#include <vector>
#include <type_traits>

template<typename T>
struct dimensions : std::integral_constant<std::size_t, 0> {};

template<typename T>
struct dimensions<std::vector<T>> : std::integral_constant<std::size_t, 1 + dimensions<T>::value> {};

template<typename T>
inline constexpr std::size_t dimensions_v = dimensions<T>::value; // (C++17)

So then you could use it like so:

dimensions<vector<vector<vector<int>>>>::value; // 3
// OR
dimensions_v<vector<vector<vector<int>>>>; // also 3 (C++17)

Edit:

Ok, I've finished the general implementation for any container type. Note that I defined a container type as anything that has a well-formed iterator type as per the expression begin(t) where std::begin is imported for ADL lookup and t is an lvalue of type T.

Here's my code along with comments to explain why stuff works and the test cases I used. Note, this requires C++17 to compile.

#include <iostream>
#include <vector>
#include <array>
#include <type_traits>

using std::begin; // import std::begin for handling C-style array with the same ADL idiom as the other types

// decide whether T is a container type - i define this as anything that has a well formed begin iterator type.
// we return true/false to determing if T is a container type.
// we use the type conversion ability of nullptr to std::nullptr_t or void* (prefers std::nullptr_t overload if it exists).
// use SFINAE to conditionally enable the std::nullptr_t overload.
// these types might not have a default constructor, so return a pointer to it.
// base case returns void* which we decay to void to represent not a container.
template<typename T>
void *_iter_elem(void*) { return nullptr; }
template<typename T>
typename std::iterator_traits<decltype(begin(*(T*)nullptr))>::value_type *_iter_elem(std::nullptr_t) { return nullptr; }

// this is just a convenience wrapper to make the above user friendly
template<typename T>
struct container_stuff
{
    typedef std::remove_pointer_t<decltype(_iter_elem<T>(nullptr))> elem_t;    // the element type if T is a container, otherwise void
    static inline constexpr bool is_container = !std::is_same_v<elem_t, void>; // true iff T is a container
};

// and our old dimension counting logic (now uses std:nullptr_t SFINAE logic)
template<typename T>
constexpr std::size_t _dimensions(void*) { return 0; }

template<typename T, std::enable_if_t<container_stuff<T>::is_container, int> = 0>
constexpr std::size_t _dimensions(std::nullptr_t) { return 1 + _dimensions<typename container_stuff<T>::elem_t>(nullptr); }

// and our nice little alias
template<typename T>
inline constexpr std::size_t dimensions_v = _dimensions<T>(nullptr);

int main()
{
    std::cout << container_stuff<int>::is_container << '\n';                 // false
    std::cout << container_stuff<int[6]>::is_container<< '\n';               // true
    std::cout << container_stuff<std::vector<int>>::is_container << '\n';    // true
    std::cout << container_stuff<std::array<int, 3>>::is_container << '\n';  // true
    std::cout << dimensions_v<std::vector<std::array<std::vector<int>, 2>>>; // 3
}



回答2:


Assuming that a container is any type that has value_type and iterator member types (standard library containers satisfy this requirement) or a C-style array, we can easily generalize Cruz Jean's solution:

template<class T, typename = void>
struct rank : std::integral_constant<std::size_t, 0> {};

// C-style arrays
template<class T>
struct rank<T[], void> 
    : std::integral_constant<std::size_t, 1 + rank<T>::value> {};

template<class T, std::size_t n>
struct rank<T[n], void> 
    : std::integral_constant<std::size_t, 1 + rank<T>::value> {};

// Standard containers
template<class T>
struct rank<T, std::void_t<typename T::iterator, typename T::value_type>> 
    : std::integral_constant<std::size_t, 1 + rank<typename T::value_type>::value> {};

int main() {
    using T1 = std::list<std::set<std::array<std::vector<int>, 4>>>;
    using T2 = std::list<std::set<std::vector<int>[4]>>;

    std::cout << rank<T1>();  // Output : 4
    std::cout << rank<T2>();  // Output : 4
}

Container types can be further restricted if needed.




回答3:


You can define the following class template vector_depth<> which matches any type:

template<typename T>
struct vector_depth {
   static constexpr size_t value = 0;
};

This primary template corresponds to the base case that ends the recursion. Then, define its corresponding specialization for std::vector<T>:

template<typename T>
struct vector_depth<std::vector<T>> {
   static constexpr size_t value = 1 + vector_depth<T>::value;
};

This specialization matches an std::vector<T> and corresponds to the recursive case.

Finally, define the function template, GetDepth(), that resorts to the class template above:

template<typename T>
constexpr auto GetDepth(const std::vector<T>& vec) {
   return 1 + vector_depth<T>::value;
}

Example:

auto main() -> int {
   std::vector<int> a;
   std::vector<std::vector<int>> b;
   std::vector<std::vector<std::vector<int>>> c;

   // constexpr - depths are determinted at compile time
   constexpr auto depth_a = GetDepth(a);
   constexpr auto depth_b = GetDepth(b);
   constexpr auto depth_c = GetDepth(c);

   std::cout << depth_a << ' ' << depth_b << ' ' << depth_c << '\n';
}

The output of this program is:

1 2 3


来源:https://stackoverflow.com/questions/59490698/how-can-i-get-the-depth-of-a-multidimensional-stdvector-at-compile-time

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!