问题
FYI: random == pseudo-random
A. when generating uniformly-random numbers, I can specify a range, i.e.:
(Math.random()-Math.random())*10+5
//generates numbers between -5 and 15
B. generating a set of random values with a version of Gaussian-esque normal randomness:
//pass in the mean and standard deviation
function randomNorm(mean, stdev) {
return Math.round((Math.random()*2-1)+(Math.random()*2-1)+(Math.random()*2-1))*stdev+mean);
}
//using the following values:
{
mean:400,
standard_deviation:1
//results in a range of 397-403, or +-range of 3
},
{
mean:400,
standard_deviation:10
//results in a range of 372-429, or +-range of 30
},
{
mean:400,
standard_deviation:25
//results in a range of 326-471, or +-range of 75
}
each one gives me a range of approximately standard_deviation*(+-3) (assuming I left the program running longer).
C. I can calculate this range as follows:
- assuming I want a range from 300-500, so var total_range = 200;
- my mean is 400, my +-range is total_range/2 (var r = 100)
- so standard_deviation would be r/3 or in this case 33.333.
This seems to be working, but I have no idea what I'm doing with math so I feel like an idiot, this solution feels kludgy and not totally accurate.
My question: is there some formula that I'm dancing around that can help me here? my requirements are as follows:
- must be able to define a range of numbers accurately.
- must be done in JavaScript, as efficiently as possible.
I think maybe I'm close but it's not quite there.
回答1:
Subtracting two random numbers doesn't give you a normal distribution, it will give you numbers that decline linearly on both sides of zero. See the red diagram in this fiddle:
http://jsfiddle.net/Guffa/tvt5K/
To get a good approximation of normal distribution, add six random numbers together. See the green diagram in the fiddle.
So, to get normally distributed random numbers, use:
((Math.random() + Math.random() + Math.random() + Math.random() + Math.random() + Math.random()) - 3) / 3
This method is based on the central limit theorem, outlined as the second method here: http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution
回答2:
I wanted to have gaussian random numbers between 0 and 1, and after many tests (thanks to @Guffa answer too) I found this to be the best:
function gaussianRand() {
var rand = 0;
for (var i = 0; i < 6; i += 1) {
rand += Math.random();
}
return rand / 6;
}
And as a bonus:
function gaussianRandom(start, end) {
return Math.floor(start + gaussianRand() * (end - start + 1));
}
来源:https://stackoverflow.com/questions/20160827/when-generating-normally-distributed-random-values-what-is-the-most-efficient-w