Is it possible to append Series to rows of DataFrame without making a list first?

吃可爱长大的小学妹 提交于 2019-12-31 11:02:47

问题


I have some data I'm trying to organize into a DataFrame in Pandas. I was trying to make each row a Series and append it to the DataFrame. I found a way to do it by appending the Series to an empty list and then converting the list of Series to a DataFrame

e.g. DF = DataFrame([series1,series2],columns=series1.index)

This list to DataFrame step seems to be excessive. I've checked out a few examples on here but none of the Series preserved the Index labels from the Series to use them as column labels.

My long way where columns are id_names and rows are type_names:

Is it possible to append Series to rows of DataFrame without making a list first?

#!/usr/bin/python

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value)
    DF.append(SR_row)
DF.head()

TypeError: Can only append a Series if ignore_index=True or if the Series has a name

Then I tried

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value,name=sample)
    DF.append(SR_row)
DF.head()

Empty DataFrame

Tried Insert a row to pandas dataframe Still getting an empty dataframe :/

I am trying to get the Series to be the rows, where the index of the Series becomes the column labels of the DataFrame


回答1:


Maybe an easier way would be to add the pandas.Series into the pandas.DataFrame with ignore_index=True argument to DataFrame.append(). Example -

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value)
    DF = DF.append(SR_row,ignore_index=True)

Demo -

In [1]: import pandas as pd

In [2]: df = pd.DataFrame([[1,2],[3,4]],columns=['A','B'])

In [3]: df
Out[3]:
   A  B
0  1  2
1  3  4

In [5]: s = pd.Series([5,6],index=['A','B'])

In [6]: s
Out[6]:
A    5
B    6
dtype: int64

In [36]: df.append(s,ignore_index=True)
Out[36]:
   A  B
0  1  2
1  3  4
2  5  6

Another issue in your code is that DataFrame.append() is not in-place, it returns the appended dataframe, you would need to assign it back to your original dataframe for it to work. Example -

DF = DF.append(SR_row,ignore_index=True)

To preserve the labels, you can use your solution to include name for the series along with assigning the appended DataFrame back to DF. Example -

DF = DataFrame()
for sample,data in D_sample_data.items():
    SR_row = pd.Series(data.D_key_value,name=sample)
    DF = DF.append(SR_row)
DF.head()



回答2:


DataFrame.append does not modify the DataFrame in place. You need to do df = df.append(...) if you want to reassign it back to the original variable.




回答3:


Something like this could work...

mydf.loc['newindex'] = myseries

Here is an example where I used it...

stats = df[['bp_prob', 'ICD9_prob', 'meds_prob', 'regex_prob']].describe()

stats
Out[32]: 
          bp_prob   ICD9_prob   meds_prob  regex_prob
count  171.000000  171.000000  171.000000  171.000000
mean     0.179946    0.059071    0.067020    0.126812
std      0.271546    0.142681    0.152560    0.207014
min      0.000000    0.000000    0.000000    0.000000
25%      0.000000    0.000000    0.000000    0.000000
50%      0.000000    0.000000    0.000000    0.013116
75%      0.309019    0.065248    0.066667    0.192954
max      1.000000    1.000000    1.000000    1.000000

medians = df[['bp_prob', 'ICD9_prob', 'meds_prob', 'regex_prob']].median()

stats.loc['median'] = medians

stats
Out[36]: 
           bp_prob   ICD9_prob   meds_prob  regex_prob
count   171.000000  171.000000  171.000000  171.000000
mean      0.179946    0.059071    0.067020    0.126812
std       0.271546    0.142681    0.152560    0.207014
min       0.000000    0.000000    0.000000    0.000000
25%       0.000000    0.000000    0.000000    0.000000
50%       0.000000    0.000000    0.000000    0.013116
75%       0.309019    0.065248    0.066667    0.192954
max       1.000000    1.000000    1.000000    1.000000
median    0.000000    0.000000    0.000000    0.013116



回答4:


Try using this command. See the example given below:

df.loc[len(df)] = ['Product 9',99,9.99,8.88,1.11]

df



来源:https://stackoverflow.com/questions/33094056/is-it-possible-to-append-series-to-rows-of-dataframe-without-making-a-list-first

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!