Adding a scatter of points to a boxplot using matplotlib

时光毁灭记忆、已成空白 提交于 2019-12-28 08:39:15

问题


I have seen this wonderful boxplot in this article (Fig.2).

As you can see, this is a boxplot on which are superimposed a scatter of black points: x indexes the black points (in a random order), y is the variable of interest. I would like to do something similar using Matplotlib, but I have no idea where to start. So far, the boxplots which I have found online are way less cool and look like this:

Documentation of matplotlib: http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot

Ways to colorize boxplots: https://github.com/jbmouret/matplotlib_for_papers#colored-boxes


回答1:


What you're looking for is a way to add jitter to the x-axis.

Something like this taken from here:

bp = titanic.boxplot(column='age', by='pclass', grid=False)
for i in [1,2,3]:
    y = titanic.age[titanic.pclass==i].dropna()
    # Add some random "jitter" to the x-axis
    x = np.random.normal(i, 0.04, size=len(y))
    plot(x, y, 'r.', alpha=0.2)

Quoting the link:

One way to add additional information to a boxplot is to overlay the actual data; this is generally most suitable with small- or moderate-sized data series. When data are dense, a couple of tricks used above help the visualization:

  1. reducing the alpha level to make the points partially transparent
  2. adding random "jitter" along the x-axis to avoid overstriking

The code looks like this:

import pylab as P
import numpy as np

# Define data
# Define numBoxes

P.figure()

bp = P.boxplot(data)

for i in range(numBoxes):
    y = data[i]
    x = np.random.normal(1+i, 0.04, size=len(y))
    P.plot(x, y, 'r.', alpha=0.2)

P.show()



回答2:


Expanding on Kyrubas's solution and using only matplotlib for the plotting part (sometimes I have difficulty formatting pandas plots with matplotlib).

from matplotlib import cm
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

# initialize dataframe
n = 200
ngroup = 3
df = pd.DataFrame({'data': np.random.rand(n), 'group': map(np.floor, np.random.rand(n) * ngroup)})

group = 'group'
column = 'data'
grouped = df.groupby(group)

names, vals, xs = [], [] ,[]

for i, (name, subdf) in enumerate(grouped):
    names.append(name)
    vals.append(subdf[column].tolist())
    xs.append(np.random.normal(i+1, 0.04, subdf.shape[0]))

plt.boxplot(vals, labels=names)
ngroup = len(vals)
clevels = np.linspace(0., 1., ngroup)

for x, val, clevel in zip(xs, vals, clevels):
    plt.scatter(x, val, c=cm.prism(clevel), alpha=0.4)




回答3:


As a simpler, possibly newer option, you could use seaborn's swarmplot option.

import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="whitegrid")
tips = sns.load_dataset("tips")

ax = sns.boxplot(x="day", y="total_bill", data=tips, showfliers = False)
ax = sns.swarmplot(x="day", y="total_bill", data=tips, color=".25")

plt.show()



来源:https://stackoverflow.com/questions/29779079/adding-a-scatter-of-points-to-a-boxplot-using-matplotlib

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!