问题
Let's say I have a spark data frame df1, with several columns (among which the column 'id') and data frame df2 with two columns, 'id' and 'other'.
Is there a way to replicate the following command
sqlContext.sql("SELECT df1.*, df2.other FROM df1 JOIN df2 ON df1.id = df2.id")
by using only pyspark functions such as join(), select() and the like?
I have to implement this join in a function and I don't want to be forced to have sqlContext as a function parameter.
Thanks!
回答1:
Not sure if the most efficient way, but this worked for me:
from pyspark.sql.functions import col
df1.alias('a').join(df2.alias('b'),col('b.id') == col('a.id')).select([col('a.'+xx) for xx in a.columns] + [col('b.other1'),col('b.other2')])
The trick is in:
[col('a.'+xx) for xx in a.columns] : all columns in a
[col('b.other1'),col('b.other2')] : some columns of b
回答2:
Asterisk (*
) works with alias. Ex:
from pyspark.sql.functions import *
df1 = df1.alias('df1')
df2 = df2.alias('df2')
df1.join(df2, df1.id == df2.id).select('df1.*')
回答3:
Without using alias.
df1.join(df2, df1.id == df2.id).select(df1["*"],df2["other"])
回答4:
Here is a solution that does not require a SQL context, but maintains the metadata of a DataFrame.
a = sc.parallelize([['a', 'foo'], ['b', 'hem'], ['c', 'haw']]).toDF(['a_id', 'extra'])
b = sc.parallelize([['p1', 'a'], ['p2', 'b'], ['p3', 'c']]).toDF(["other", "b_id"])
c = a.join(b, a.a_id == b.b_id)
Then, c.show()
yields:
+----+-----+-----+----+
|a_id|extra|other|b_id|
+----+-----+-----+----+
| a| foo| p1| a|
| b| hem| p2| b|
| c| haw| p3| c|
+----+-----+-----+----+
回答5:
drop duplicate b_id
c = a.join(b, a.a_id == b.b_id).drop(b.b_id)
回答6:
You could just make the join and after that select the wanted columns https://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=dataframe%20join#pyspark.sql.DataFrame.join
回答7:
I got an error: 'a not found' using the suggested code:
from pyspark.sql.functions import col df1.alias('a').join(df2.alias('b'),col('b.id') == col('a.id')).select([col('a.'+xx) for xx in a.columns] + [col('b.other1'),col('b.other2')])
I changed a.columns
to df1.columns
and it worked out.
来源:https://stackoverflow.com/questions/36132322/join-two-data-frames-select-all-columns-from-one-and-some-columns-from-the-othe