How to display custom images in TensorBoard using Keras?

感情迁移 提交于 2019-12-28 03:38:04

问题


I'm working on a segmentation problem in Keras and I want to display segmentation results at the end of every training epoch.

I want something similar to Tensorflow: How to Display Custom Images in Tensorboard (e.g. Matplotlib Plots), but using Keras. I know that Keras has the TensorBoard callback but it seems limited for this purpose.

I know this would break the Keras backend abstraction, but I'm interested in using TensorFlow backend anyway.

Is it possible to achieve that with Keras + TensorFlow?


回答1:


So, the following solution works well for me:

import tensorflow as tf

def make_image(tensor):
    """
    Convert an numpy representation image to Image protobuf.
    Copied from https://github.com/lanpa/tensorboard-pytorch/
    """
    from PIL import Image
    height, width, channel = tensor.shape
    image = Image.fromarray(tensor)
    import io
    output = io.BytesIO()
    image.save(output, format='PNG')
    image_string = output.getvalue()
    output.close()
    return tf.Summary.Image(height=height,
                         width=width,
                         colorspace=channel,
                         encoded_image_string=image_string)

class TensorBoardImage(keras.callbacks.Callback):
    def __init__(self, tag):
        super().__init__() 
        self.tag = tag

    def on_epoch_end(self, epoch, logs={}):
        # Load image
        img = data.astronaut()
        # Do something to the image
        img = (255 * skimage.util.random_noise(img)).astype('uint8')

        image = make_image(img)
        summary = tf.Summary(value=[tf.Summary.Value(tag=self.tag, image=image)])
        writer = tf.summary.FileWriter('./logs')
        writer.add_summary(summary, epoch)
        writer.close()

        return

tbi_callback = TensorBoardImage('Image Example')

Just pass the callback to fit or fit_generator.

Note that you can also run some operations using the model inside the callback. For example, you may run the model on some images to check its performance.




回答2:


Based on the above answers and my own searching, I provide the following code to finish the following things using TensorBoard in Keras:


  • problem setup: to predict the disparity map in binocular stereo matching;
  • to feeds the model with input left image x and ground truth disparity map gt;
  • to display the input x and ground truth 'gt', at some iteration time;
  • to display the output y of your model, at some iteration time.

  1. First of all, you have to make your costumed callback class with Callback. Note that a callback has access to its associated model through the class property self.model. Also Note: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model.

    from keras.callbacks import Callback
    import numpy as np
    from keras import backend as K
    import tensorflow as tf
    import cv2
    
    # make the 1 channel input image or disparity map look good within this color map. This function is not necessary for this Tensorboard problem shown as above. Just a function used in my own research project.
    def colormap_jet(img):
        return cv2.cvtColor(cv2.applyColorMap(np.uint8(img), 2), cv2.COLOR_BGR2RGB)
    
    class customModelCheckpoint(Callback):
        def __init__(self, log_dir='./logs/tmp/', feed_inputs_display=None):
              super(customModelCheckpoint, self).__init__()
              self.seen = 0
              self.feed_inputs_display = feed_inputs_display
              self.writer = tf.summary.FileWriter(log_dir)
    
        # this function will return the feeding data for TensorBoard visualization;
        # arguments:
        #  * feed_input_display : [(input_yourModelNeed, left_image, disparity_gt ), ..., (input_yourModelNeed, left_image, disparity_gt), ...], i.e., the list of tuples of Numpy Arrays what your model needs as input and what you want to display using TensorBoard. Note: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model. 
        def custom_set_feed_input_to_display(self, feed_inputs_display):
              self.feed_inputs_display = feed_inputs_display
    
        # copied from the above answers;
        def make_image(self, numpy_img):
              from PIL import Image
              height, width, channel = numpy_img.shape
              image = Image.fromarray(numpy_img)
              import io
              output = io.BytesIO()
              image.save(output, format='PNG')
              image_string = output.getvalue()
              output.close()
              return tf.Summary.Image(height=height, width=width, colorspace= channel, encoded_image_string=image_string)
    
    
        # A callback has access to its associated model through the class property self.model.
        def on_batch_end(self, batch, logs = None):
              logs = logs or {} 
              self.seen += 1
              if self.seen % 200 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
                  summary_str = []
                  for i in range(len(self.feed_inputs_display)):
                      feature, disp_gt, imgl = self.feed_inputs_display[i]
                      disp_pred = np.squeeze(K.get_session().run(self.model.output, feed_dict = {self.model.input : feature}), axis = 0)
                      #disp_pred = np.squeeze(self.model.predict_on_batch(feature), axis = 0)
                      summary_str.append(tf.Summary.Value(tag= 'plot/img0/{}'.format(i), image= self.make_image( colormap_jet(imgl)))) # function colormap_jet(), defined above;
                      summary_str.append(tf.Summary.Value(tag= 'plot/disp_gt/{}'.format(i), image= self.make_image( colormap_jet(disp_gt))))
                      summary_str.append(tf.Summary.Value(tag= 'plot/disp/{}'.format(i), image= self.make_image( colormap_jet(disp_pred))))
    
                  self.writer.add_summary(tf.Summary(value = summary_str), global_step =self.seen)
    
  2. Next, pass this callback object to fit_generator() for your model, like:

       feed_inputs_4_display = some_function_you_wrote()
       callback_mc = customModelCheckpoint( log_dir = log_save_path, feed_inputd_display = feed_inputs_4_display)
       # or 
       callback_mc.custom_set_feed_input_to_display(feed_inputs_4_display)
       yourModel.fit_generator(... callbacks = callback_mc)
       ...
    
  3. Now your can run the code, and go the TensorBoard host to see the costumed image display. For example, this is what I got using the aforementioned code:


    Done! Enjoy!




回答3:


I'm trying to display matplotlib plots to the tensorboard (useful incases of plotting statistics, heatmaps, etc). It can be used for the general case also.

class AttentionLogger(keras.callbacks.Callback):
        def __init__(self, val_data, logsdir):
            super(AttentionLogger, self).__init__()
            self.logsdir = logsdir  # where the event files will be written 
            self.validation_data = val_data # validation data generator
            self.writer = tf.summary.FileWriter(self.logsdir)  # creating the summary writer

        @tfmpl.figure_tensor
        def attention_matplotlib(self, gen_images): 
            '''
            Creates a matplotlib figure and writes it to tensorboard using tf-matplotlib
            gen_images: The image tensor of shape (batchsize,width,height,channels) you want to write to tensorboard
            '''  
            r, c = 5,5  # want to write 25 images as a 5x5 matplotlib subplot in TBD (tensorboard)
            figs = tfmpl.create_figures(1, figsize=(15,15))
            cnt = 0
            for idx, f in enumerate(figs):
                for i in range(r):
                    for j in range(c):    
                        ax = f.add_subplot(r,c,cnt+1)
                        ax.set_yticklabels([])
                        ax.set_xticklabels([])
                        ax.imshow(gen_images[cnt])  # writes the image at index cnt to the 5x5 grid
                        cnt+=1
                f.tight_layout()
            return figs

        def on_train_begin(self, logs=None):  # when the training begins (run only once)
                image_summary = [] # creating a list of summaries needed (can be scalar, images, histograms etc)
                for index in range(len(self.model.output)):  # self.model is accessible within callback
                    img_sum = tf.summary.image('img{}'.format(index), self.attention_matplotlib(self.model.output[index]))                    
                    image_summary.append(img_sum)
                self.total_summary = tf.summary.merge(image_summary)

        def on_epoch_end(self, epoch, logs = None):   # at the end of each epoch run this
            logs = logs or {} 
            x,y = next(self.validation_data)  # get data from the generator
            # get the backend session and sun the merged summary with appropriate feed_dict
            sess_run_summary = K.get_session().run(self.total_summary, feed_dict = {self.model.input: x['encoder_input']})
            self.writer.add_summary(sess_run_summary, global_step =epoch)  #finally write the summary!

Then you will have to give it as an argument to fit/fit_generator

#val_generator is the validation data generator
callback_image = AttentionLogger(logsdir='./tensorboard', val_data=val_generator)
... # define the model and generators

# autoencoder is the model, note how callback is suppiled to fit_generator
autoencoder.fit_generator(generator=train_generator,
                    validation_data=val_generator,
                    callbacks=callback_image)

In my case where I'm displaying attention maps (as heatmaps) to tensorboard, this is the output.




回答4:


Similarily, you might want to try tf-matplotlib. Here's a scatter plot

import tensorflow as tf
import numpy as np

import tfmpl

@tfmpl.figure_tensor
def draw_scatter(scaled, colors): 
    '''Draw scatter plots. One for each color.'''  
    figs = tfmpl.create_figures(len(colors), figsize=(4,4))
    for idx, f in enumerate(figs):
        ax = f.add_subplot(111)
        ax.axis('off')
        ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
        f.tight_layout()

    return figs

with tf.Session(graph=tf.Graph()) as sess:

    # A point cloud that can be scaled by the user
    points = tf.constant(
        np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
    )
    scale = tf.placeholder(tf.float32)        
    scaled = points*scale

    # Note, `scaled` above is a tensor. Its being passed `draw_scatter` below. 
    # However, when `draw_scatter` is invoked, the tensor will be evaluated and a
    # numpy array representing its content is provided.   
    image_tensor = draw_scatter(scaled, ['r', 'g'])
    image_summary = tf.summary.image('scatter', image_tensor)      
    all_summaries = tf.summary.merge_all() 

    writer = tf.summary.FileWriter('log', sess.graph)
    summary = sess.run(all_summaries, feed_dict={scale: 2.})
    writer.add_summary(summary, global_step=0)

When executed, this results in the following plot inside Tensorboard

Note that tf-matplotlib takes care about evaluating any tensor inputs, avoids pyplot threading issues and supports blitting for runtime critical plotting.




回答5:


I believe I found a better way to log such custom images to tensorboard making use of the tf-matplotlib. Here is how...

class TensorBoardDTW(tf.keras.callbacks.TensorBoard):
    def __init__(self, **kwargs):
        super(TensorBoardDTW, self).__init__(**kwargs)
        self.dtw_image_summary = None

    def _make_histogram_ops(self, model):
        super(TensorBoardDTW, self)._make_histogram_ops(model)
        tf.summary.image('dtw-cost', create_dtw_image(model.output))

One just need to overwrite the _make_histogram_ops method from the TensorBoard callback class to add the custom summary. In my case, the create_dtw_image is a function that creates an image using the tf-matplotlib.

Regards,.




回答6:


Here is example how to draw landmarks on image:

class CustomCallback(keras.callbacks.Callback):
    def __init__(self, model, generator):
        self.generator = generator
        self.model = model

    def tf_summary_image(self, tensor):
        import io
        from PIL import Image

        tensor = tensor.astype(np.uint8)

        height, width, channel = tensor.shape
        image = Image.fromarray(tensor)
        output = io.BytesIO()
        image.save(output, format='PNG')
        image_string = output.getvalue()
        output.close()
        return tf.Summary.Image(height=height,
                             width=width,
                             colorspace=channel,
                             encoded_image_string=image_string)

    def on_epoch_end(self, epoch, logs={}):
        frames_arr, landmarks = next(self.generator)

        # Take just 1st sample from batch
        frames_arr = frames_arr[0:1,...]

        y_pred = self.model.predict(frames_arr)

        # Get last frame for which we have done predictions
        img = frames_arr[0,-1,:,:]

        img = img * 255
        img = img[:, :, ::-1]
        img = np.copy(img)

        landmarks_gt = landmarks[-1].reshape(-1,2)
        landmarks_pred = y_pred.reshape(-1,2)

        img = draw_landmarks(img, landmarks_gt, (0,255,0))
        img = draw_landmarks(img, landmarks_pred, (0,0,255))

        image = self.tf_summary_image(img)
        summary = tf.Summary(value=[tf.Summary.Value(image=image)])
        writer = tf.summary.FileWriter('./logs')
        writer.add_summary(summary, epoch)
        writer.close()
        return



回答7:


class customModelCheckpoint(Callback):
def __init__(self, log_dir='../logs/', feed_inputs_display=None):
      super(customModelCheckpoint, self).__init__()
      self.seen = 0
      self.feed_inputs_display = feed_inputs_display
      self.writer = tf.summary.FileWriter(log_dir)


def custom_set_feed_input_to_display(self, feed_inputs_display):
      self.feed_inputs_display = feed_inputs_display


# A callback has access to its associated model through the class property self.model.
def on_batch_end(self, batch, logs = None):
      logs = logs or {}
      self.seen += 1
      if self.seen % 8 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
          summary_str = []
          feature = self.feed_inputs_display[0][0]
          disp_gt = self.feed_inputs_display[0][1]
          disp_pred = self.model.predict_on_batch(feature)

          summary_str.append(tf.summary.image('disp_input/{}'.format(self.seen), feature, max_outputs=4))
          summary_str.append(tf.summary.image('disp_gt/{}'.format(self.seen), disp_gt, max_outputs=4))
          summary_str.append(tf.summary.image('disp_pred/{}'.format(self.seen), disp_pred, max_outputs=4))

          summary_st = tf.summary.merge(summary_str)
          summary_s = K.get_session().run(summary_st)
          self.writer.add_summary(summary_s, global_step=self.seen)
          self.writer.flush()
Then you can call your custom callback and write the image in tensorboard
callback_mc = customModelCheckpoint(log_dir='../logs/',  feed_inputs_display=[(a, b)])
callback_tb = TensorBoard(log_dir='../logs/', histogram_freq=0, write_graph=True, write_images=True)
callback = []
def data_gen(fr1, fr2):
while True:
    hdr_arr = []
    ldr_arr = []
    for i in range(args['batch_size']):
        try:
            ldr = pickle.load(fr2)           
            hdr = pickle.load(fr1)               
        except EOFError:
            fr1 = open(args['data_h_hdr'], 'rb')
            fr2 = open(args['data_h_ldr'], 'rb')
        hdr_arr.append(hdr)
        ldr_arr.append(ldr)
    hdr_h = np.array(hdr_arr)
    ldr_h = np.array(ldr_arr)
    gen = aug.flow(hdr_h, ldr_h, batch_size=args['batch_size'])
    out = gen.next()
    a = out[0]
    b = out[1]
    callback_mc.custom_set_feed_input_to_display(feed_inputs_display=[(a, b)])
    yield [a, b]

callback.append(callback_tb)
callback.append(callback_mc)
H = model.fit_generator(data_gen(fr1, fr2), steps_per_epoch=100,   epochs=args['epoch'], callbacks=callback)

picture



来源:https://stackoverflow.com/questions/43784921/how-to-display-custom-images-in-tensorboard-using-keras

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!