问题
My df:
In [163]: df.head()
Out[163]:
x-axis y-axis z-axis
time
2017-07-27 06:23:08 -0.107666 -0.068848 0.963623
2017-07-27 06:23:08 -0.105225 -0.070068 0.963867
.....
I set the index as datetime. Since the sampling rate (10 Hz) is not always constant in the dataframe and for some second I have 8 or 9 samples.
- I would like to specify the milliseconds on my datatime (06:23:08**.100**, 06:23:08**.200**, etc.)
- I also would like to do interpolation of the missing samples.
Some ideas how to do it in pandas?
回答1:
First lets create some sample data which maybe resembles your data.
import pandas as pd
from datetime import timedelta
from datetime import datetime
base = datetime.now()
date_list = [base - timedelta(days=x) for x in range(0, 2)]
values = [v for v in range(2)]
df = pd.DataFrame.from_dict({'Date': date_list, 'values': values})
df = df.set_index('Date')
df
values
Date
2017-08-18 20:42:08.563878 0
2017-08-17 20:42:08.563878 1
Now we will create another data frame with every 100 milliseconds of datapoint.
min_val = df.index.min()
max_val = df.index.max()
all_val = []
while min_val <= max_val:
all_val.append(min_val)
min_val += timedelta(milliseconds=100)
# len(all_val) 864001
df_new = pd.DataFrame.from_dict({'Date': all_val})
df_new = df_new.set_index('Date')
lets join both data frame so all missing rows will have index but no values.
final_df = df_new.join(df)
final_df
values
Date
2017-08-17 20:42:08.563878 1.0
2017-08-17 20:42:08.663878 NaN
2017-08-17 20:42:08.763878 NaN
2017-08-17 20:42:08.863878 NaN
2017-08-17 20:42:08.963878 NaN
2017-08-17 20:42:09.063878 NaN
2017-08-17 20:42:09.163878 NaN
Now interpolate data:
df_final.interpolate()
values
Date
2017-08-17 20:42:08.563878 1.000000
2017-08-17 20:42:08.663878 0.999999
2017-08-17 20:42:08.763878 0.999998
2017-08-17 20:42:08.863878 0.999997
2017-08-17 20:42:08.963878 0.999995
2017-08-17 20:42:09.063878 0.999994
2017-08-17 20:42:09.163878 0.999993
2017-08-17 20:42:09.263878 0.999992
Some interpolation strategies: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.interpolate.html
UPDATE: As per the discussion in comments:
say our initial data does not have millisecond information.
df_new_date_without_miliseconds = df_new['Date']
df_new_date_without_miliseconds[0] # Timestamp('2017-08-17 21:45:49')
max_value_date = df_new_date_without_miliseconds[0]
max_value_miliseconds = df_new_date_without_miliseconds[0]
updated_dates = []
for val in df_new_date_without_miliseconds:
if val == max_value_date:
val = max_value_miliseconds + timedelta(milliseconds=100)
max_value_miliseconds = val
elif val > max_value_date:
max_value_date = val + timedelta(milliseconds=0)
max_value_miliseconds = val
updated_dates.append(val)
output:
[Timestamp('2017-08-17 21:45:49.100000'),
Timestamp('2017-08-17 21:45:49.200000'),
Timestamp('2017-08-17 21:45:49.300000'),
Timestamp('2017-08-17 21:45:50'),
Timestamp('2017-08-17 21:45:50.100000'),
Assign the new values to the DataFrame
df_new['Date'] = updated_dates
来源:https://stackoverflow.com/questions/45759515/missing-samples-of-a-dataframe-in-pandas