Python Pandas: Group by and count distinct value over all columns?

放肆的年华 提交于 2019-12-25 08:34:49

问题


I have df

      column1  column2  column3  column4
0    name        True        True         NaN
1    name        NaN        True         NaN
2   name1        NaN        True         True 
3   name1        True        True       True 

and I would like to Group by and count distinct value over all columnsI am trying :

df.groupby('column1').nunique()

but I am receiving this error.

AttributeError: 'DataFrameGroupBy' object has no attribute 'nunique'

Anybody have a suggestion?


回答1:


You can use stack for Series and then Series.groupby with SeriesGroupBy.nunique:

df1 = df.set_index('column1').stack()

print (df1.groupby(level=[0,1]).nunique(dropna=False).unstack())

Sample:

print (df)
  column1 column2 column3 column4
0    name    True    True     NaN
1    name     NaN    True     NaN
2   name1     NaN    True    True
3   name1    True    True    True

df1 = df.set_index('column1').stack(dropna=False)
print (df1)
column1         
name     column2    True
         column3    True
         column4     NaN
         column2     NaN
         column3    True
         column4     NaN
name1    column2     NaN
         column3    True
         column4    True
         column2    True
         column3    True
         column4    True
dtype: object

print (df1.groupby(level=[0,1]).nunique(dropna=False).unstack(fill_value=0))
         column2  column3  column4
column1                           
name           2        1        1
name1          2        1        1

print (df1.groupby(level=[0,1]).nunique().unstack(fill_value=0))
         column2  column3  column4
column1                           
name           1        1        0
name1          1        1        1

Another solution with double apply:

print (df.groupby('column1')
         .apply(lambda x: x.iloc[:,1:].apply(lambda y: y.nunique(dropna=False))))
         column2  column3  column4
column1                           
name           2        1        1
name1          2        1        1

print (df.groupby('column1').apply(lambda x: x.iloc[:,1:].apply(lambda y: y.nunique())))
         column2  column3  column4
column1                           
name           1        1        0
name1          1        1        1


来源:https://stackoverflow.com/questions/40004595/python-pandas-group-by-and-count-distinct-value-over-all-columns

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!