问题
Hive Table Schema:
c_date date
c_timestamp timestamp
It's text table
Hive Table data:
hive> select * from all_datetime_types;
OK
0001-01-01 0001-01-01 00:00:00.000000001
9999-12-31 9999-12-31 23:59:59.999999999
csv obtained after spark job:
c_date,c_timestamp
0001-01-01 00:00:00.0,0001-01-01 00:00:00.0
9999-12-31 00:00:00.0,9999-12-31 23:59:59.999
Issues:
00:00:00.0
is added in date type- timestamp is truncated to milliseconds precision
Useful code:
SparkConf conf = new SparkConf(true).setMaster("yarn-cluster").setAppName("SAMPLE_APP");
SparkContext sc = new SparkContext(conf);
HiveContext hc = new HiveContext(sc);
DataFrame df = hc.table("testdb.all_datetime_types");
df.printSchema();
DataFrameWriter writer = df.repartition(1).write();
writer.format("com.databricks.spark.csv").option("header", "true").save(outputHdfsFile);
I am aware of dateFormat
option. But date
and timestamp
column can have different formats in Hive.
Can I simply covert all columns to String?
回答1:
you can use the timestampFormat
option in spark to specify your time stamp format.
spark.read.option("timestampFormat", "MM/dd/yyyy h:mm:ss a").csv("path")
回答2:
Spark supports up to nanoseconds precision of Timestamp. You can probably try mapping date and timestamp columns like below,
DataFrame df = hiveContext.sql("select from_unixtime(unix_timestamp(date, 'yyyy-MM-dd'),'yyyy-MM-dd'), from_unixtime(unix_timestamp(timestamp, 'yyyy-MM-dd HH:mm:ss.SSSSSS'),'yyyy-MM-dd HH:mm:ss.SSSSSS') from table")
来源:https://stackoverflow.com/questions/42979217/spark-csv-data-validation-failed-for-date-and-timestamp-data-types-of-hive