parsing a JSON string Pyspark dataframe column that has string of array in one of the columns

安稳与你 提交于 2019-12-25 03:19:08

问题


I am trying to read a JSON file and parse 'jsonString' and the underlying fields which includes array into a pyspark dataframe.

Here is the contents of json file.

[{"jsonString": "{\"uid\":\"value1\",\"adUsername\":\"value3\",\"courseCertifications\":[{\"uid\":\"value2\",\"courseType\":\"TRAINING\"},{\"uid\":\"TEST\",\"courseType\":\"TRAINING\"}],\"modifiedBy\":\"value4\"}","transactionId": "value5", "tableName": "X"},
 {"jsonString": "{\"uid\":\"value11\",\"adUsername\":\"value13\",\"modifiedBy\":\"value14\"}","transactionId": "value15", "tableName": "X1"},
 {"jsonString": "{\"uid\":\"value21\",\"adUsername\":\"value23\",\"modifiedBy\":\"value24\"}","transactionId": "value25", "tableName": "X2"}]

I am able to parse contents of string 'jsonString' and select required columns using the below logic

df = spark.read.json('path.json',multiLine=True)
df = df.withColumn('courseCertifications', explode(array(get_json_object(df['jsonString'],'$.courseCertifications'))))

Now my end goal is to parse field "courseType" from "courseCertifications" and create one row per instance.

I am using below logic to get "courseType"

df = df.withColumn('new',get_json_object(df.courseCertifications, '$[*].courseType'))

I am able to get the contents of "courseType" but as a string as shown below

[Row(new=u'["TRAINING","TRAINING"]')]

My end goal is to create a dataframe with columns transactionId, jsonString.uid, jsonString.adUsername, jsonString.courseCertifications.uid, jsonString.courseCertifications.courseType

  • I need to retain all the rows and create multiple rows one per array instances of courseCertifications.uid/courseCertifications.courseType.

回答1:


An elegant manner to resolve your question is creating the schema of the json string and then parse it using from_json function

import pyspark.sql.functions as f
from pyspark.shell import spark
from pyspark.sql.types import ArrayType, StringType, StructType, StructField

df = spark.read.json('your_path', multiLine=True)
schema = StructType([
    StructField('uid', StringType()),
    StructField('adUsername', StringType()),
    StructField('modifiedBy', StringType()),
    StructField('courseCertifications', ArrayType(
        StructType([
            StructField('uid', StringType()),
            StructField('courseType', StringType())
        ])
    ))
])

df = df \
    .withColumn('tmp', f.from_json(df.jsonString, schema)) \
    .withColumn('adUsername', f.col('tmp').adUsername) \
    .withColumn('uid', f.col('tmp').uid) \
    .withColumn('modifiedBy', f.col('tmp').modifiedBy) \
    .withColumn('tmp', f.explode(f.col('tmp').courseCertifications)) \
    .withColumn('course_uid', f.col('tmp').uid) \
    .withColumn('course_type', f.col('tmp').courseType) \
    .drop('jsonString', 'tmp')
df.show()

Output:

+-------------+------+----------+----------+----------+-----------+
|transactionId|uid   |adUsername|modifiedBy|course_uid|course_type|
+-------------+------+----------+----------+----------+-----------+
|value5       |value1|value3    |value4    |value2    |TRAINING   |
|value5       |value1|value3    |value4    |TEST      |TRAINING   |
+-------------+------+----------+----------+----------+-----------+


来源:https://stackoverflow.com/questions/56403476/parsing-a-json-string-pyspark-dataframe-column-that-has-string-of-array-in-one-o

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!