Spark ML VectorAssembler returns strange output

南楼画角 提交于 2019-11-27 09:29:27

There is nothing strange about the output. Your vector seems to have lots of zero elements thus spark used it’s sparse representation.

To explain further :

It seems like your vector is composed of 18 elements (dimension).

This indices [0,1,6,9,14,17] from the vector contains non zero elements which are in order [17.0,15.0,3.0,1.0,4.0,2.0]

Sparse Vector representation is a way to save computational space thus easier and faster to compute. More on Sparse representation here.

Now of course you can convert that sparse representation to a dense representation but it comes at a cost.

In case you are interested in getting feature importance, thus I advise you to take a look at this.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!