问题
I want to perform a transformation on my DataFrame df
so that I only have each key once and only once in the final DataFrame.
For machine learning purposes, I don't want to have a bias in my dataset. This should never occur, but the data I get from my data source contains this "weirdness". So if I have lines with the same keys, I want to be able to chose either a combination of the two (like mean value) or a string concatenation (labels for example) or a random values set.
Say my DataFrame df
looks like this:
+---+----+-----------+---------+
|ID1| ID2| VAL1| VAL2|
+---+----+-----------+---------+
| A| U| PIERRE| 1|
| A| U| THOMAS| 2|
| A| U| MICHAEL| 3|
| A| V| TOM| 2|
| A| V| JACK| 3|
| A| W| MICHEL| 2|
| A| W| JULIEN| 3|
+---+----+-----------+---------+
I want my final DataFrame out
to only keep one set of values per key, randomly. It could be another type of aggregation (say the concatenation of all values as a string) but I just don't want to build an Integer value from it, rather build new entries.
Eg. a final output could be (keeping only the first row per key):
+---+----+-----------+---------+
|ID1| ID2| VAL1| VAL2|
+---+----+-----------+---------+
| A| U| PIERRE| 1|
| A| V| TOM| 2|
| A| W| MICHEL| 2|
+---+----+-----------+---------+
Another final output could be (keeping a random row per key):
+---+----+-----------+---------+
|ID1| ID2| VAL1| VAL2|
+---+----+-----------+---------+
| A| U| MICHAEL| 3|
| A| V| JACK| 3|
| A| W| MICHEL| 2|
+---+----+-----------+---------+
Or, building a new set of values:
+---+----+--------------------------+----------+
|ID1| ID2| VAL1| VAL2|
+---+----+--------------------------+----------+
| A| U| (PIERRE, THOMAS, MICHAEL)| (1, 2, 3)|
| A| V| (TOM, JACK)| (2, 3)|
| A| W| (MICHEL, JULIEN)| (2, 3)|
+---+----+--------------------------+----------+
The answer should use Spark with Scala. I also want to underline that the actual schema is way more complicated than that and I would like to reach a generic solution. Also, I do not want to fetch only unique values from one column but filter out lines that have same keys. Thanks!
EDIT This is what I tried to do (but Row.get(colname)
throws a NoSuchElementException: key not found...
):
def myDropDuplicatesRandom(df: DataFrame, colnames: Seq[String]): DataFrame = {
val fields_map: Map[String, (Int, DataType)] =
df.schema.fieldNames.map(fname => {
val findex = df.schema.fieldIndex(fname)
val ftype = df.schema.fields(findex).dataType
(fname, (findex, ftype))
}).toMap[String, (Int, DataType)]
df.sparkSession.createDataFrame(
df.rdd
.map[(String, Row)](r => (colnames.map(colname => r.get(fields_map(colname)._1).toString.replace("`", "")).reduceLeft((x, y) => "" + x + y), r))
.groupByKey()
.map{case (x: String, y: Iterable[Row]) => Utils.randomElement(y)}
, df.schema)
}
回答1:
Here's one approach:
val df = Seq(
("A", "U", "PIERRE", 1),
("A", "U", "THOMAS", 2),
("A", "U", "MICHAEL", 3),
("A", "V", "TOM", 2),
("A", "V", "JACK", 3),
("A", "W", "MICHEL", 2),
("A", "W", "JULIEN", 3)
).toDF("ID1", "ID2", "VAL1", "VAL2")
import org.apache.spark.sql.functions._
// Gather key/value column lists based on specific filtering criteria
val keyCols = df.columns.filter(_.startsWith("ID"))
val valCols = df.columns diff keyCols
// Group by keys to aggregate combined value-columns then re-expand
df.groupBy(keyCols.map(col): _*).
agg(first(struct(valCols.map(col): _*)).as("VALS")).
select($"ID1", $"ID2", $"VALS.*")
// +---+---+------+----+
// |ID1|ID2| VAL1|VAL2|
// +---+---+------+----+
// | A| W|MICHEL| 2|
// | A| V| TOM| 2|
// | A| U|PIERRE| 1|
// +---+---+------+----+
[UPDATE]
If I understand your expanded requirement correctly, you're looking for a generic way to transform dataframes by keys with an arbitrary agg
function, like:
import org.apache.spark.sql.Column
def customAgg(keyCols: Seq[String], valCols: Seq[String], aggFcn: Column => Column) = {
df.groupBy(keyCols.map(col): _*).
agg(aggFcn(struct(valCols.map(col): _*)).as("VALS")).
select($"ID1", $"ID2", $"VALS.*")
}
customAgg(keyCols, valCols, first)
I'd say that going down this path would result in very limited applicable agg
functions. While the above works for first
, you would have to implement differently for, say, collect_list/collect_set
, etc. One can certainly hand-roll all the various types of agg
functions, but it would likely result in unwarranted code maintenance hassle.
回答2:
You can use groupBy
with first
and struct
as below
import org.apache.spark.sql.functions._
val d1 = spark.sparkContext.parallelize(Seq(
("A", "U", "PIERRE", 1),
("A", "U", "THOMAS", 2),
("A", "U", "MICHAEL", 3),
("A", "V", "TOM", 2),
("A", "V", "JACK", 3),
("A", "W", "MICHEL", 2),
("A", "W", "JULIEN", 3)
)).toDF("ID1", "ID2", "VAL1", "VAL2")
d1.groupBy("ID1", "ID2").agg(first(struct("VAL1", "VAL2")).as("val"))
.select("ID1", "ID2", "val.*")
.show(false)
UPDATE: If you have keys and values as a parameter then you can use as below.
val keys = Seq("ID1", "ID2")
val values = Seq("VAL1", "VAL2")
d1.groupBy(keys.head, keys.tail : _*)
.agg(first(struct(values.head, values.tail:_*)).as("val"))
.select( "val.*",keys:_*)
.show(false)
Output:
+---+---+------+----+
|ID1|ID2|VAL1 |VAL2|
+---+---+------+----+
|A |W |MICHEL|2 |
|A |V |TOM |2 |
|A |U |PIERRE|1 |
+---+---+------+----+
I hope this helps!
来源:https://stackoverflow.com/questions/49157052/homemade-dataframe-aggregation-dropduplicates-spark