问题
I want to convert my many-digit numeric vector to character. I tried the following solutions here which works for one number but not for a vector. This is OK
options(digits=20)
options(scipen=99999)
x<-129483.19999999999709;format(round(x, 12), nsmall = 12)
[1] "129483.199999999997"
But this is not. how to keep numeric precision in characters for numeric vectors?
> y <- c(129483.19999999999709, 1.3546746874,687676846.2546746464)
Specially problematic is 687676846.2546746464
Also tried:
> specify_decimal(y, 12)
[1] "129483.199999999997" "1.354674687400" "687676846.254674673080"
> formatC(y, digits = 12, format = "f")
[1] "129483.199999999997" "1.354674687400" "687676846.254674673080"
> formattable(y, digits = 12, format = "f")
[1] 129483.199999999997 1.354674687400 687676846.254674673080
> sprintf(y, fmt='%#.12g')
[1] "129483.200000" "1.35467468740" "687676846.255"
> sprintf(y, fmt='%#.22g')
[1] "129483.1999999999970896" "1.354674687399999966075" "687676846.2546746730804"
Expected result:
[1] "129483.199999999997" "1.354674687400" "687676846.254674646400"
It seems that precision loss occurs once only, it is not repeated.
> require(dplyr)
> convert <- function(x) as.numeric(as.character(x))
> 687676846.2546746464 %>% convert
[1] 687676846.25467503
> 687676846.2546746464 %>% convert %>% convert %>% convert
[1] 687676846.25467503
Here I only have 5-digit precision, but more problematic I can't know beforehand what precision I am going to get..
回答1:
At the end I could do what I wanted using these functions. addtrailingzeroes
will add a number of zeroes after decimal to x.
nbdec <- function(x) {
x1 <- as.character(x)
xsplit <- strsplit(x1,"\\.")
xlength <- sapply(xsplit, function(d) nchar(d)[2])
xlength <- ifelse(is.na(xlength), 0, xlength)
return(xlength)
}
trailingzeroes <- function(x, dig) {
res <- rep(NA, length(x))
for( i in 1:length(x)) {
if(!is.na(x[i])) res[i] <- { paste0(rep(0,max(0,dig-nbdec(x[i]))), collapse="") }
else { res[i] <- ""}
}
return(res)
}
trailingcommas <- function(x) ifelse(is.na(x), NA, ifelse(nbdec(x)==0, ".",""))
addtrailingzeroes <- function(x, digits) {
return(ifelse(!is.na(x), paste0(x, trailingcommas(x), trailingzeroes(x, digits)),NA))
}
However to suppress inaccuracies and rounding mistakes, x has to be cropped first using roundnumerics.max
:
roundnumerics.max <- function(df, startdig=12) {
for(icol in 1:ncol(df)) {
if( is.numeric(df[,icol])) {
dig <- startdig
while(any(!as.numeric(as.character(df[,icol])) %==% df[,icol])) {
dig <- dig-1
df[,icol] <- round(df[,icol], digits=dig)
if(dig==0) {
break
pprint("ERROR: zero numeric accuracy")
}
}
pprint("Numeric accuracy for column ",icol," ", colnames(df)[icol], " is ", dig)
}
}
return(data.frame(df, stringsAsFactors = F))
}
This is slow and far from elegant... I still think it hard to believe that R has such an accuracy limitation to 16 significant digits, and adds inaccurate noise that causes divergences when you try to increase the digits
option...Without letting you know...
来源:https://stackoverflow.com/questions/53279593/r-numeric-to-char-precision-loss