问题
I want to solve the following system of equations shown in the image below,
The matrix system
where the component of the matrix A is complex numbers with the angle (theta) runs from 0 to 2*pi
which has m divisions, and n = 9
. The known value z = x + iy.
Suppose the x and y of matrix z is
z =
0 1.0148
0.1736 0.9848
0.3420 0.9397
0.5047 0.8742
0.6748 0.8042
0.8419 0.7065
0.9919 0.5727
1.1049 0.4022
1.1757 0.2073
1.1999 0
1.1757 -0.2073
1.1049 -0.4022
0.9919 -0.5727
0.8419 -0.7065
0.6748 -0.8042
0.5047 -0.8742
0.3420 -0.9397
0.1736 -0.9848
0 -1.0148
How do you solve them iteratively? Notice that the value of the first component of the desired constants must equal 1. I am working with Matlab.
回答1:
You can apply simple multilinear regression for complex valued data.
Step 1. Get the matrix ready for linear regression
Your linear system

written without matrices, becomes

that rearranged yelds

If you rewrite it with matrices you get

Step 2. Apply multiple linear regression
Let the system above be

where

Now you can apply linear regression, that returns the best fit for α
when

where

is the conjugate transpose.
In MATLAB
Y = Z - A(:,1); % Calculate Y subtracting the first col of A from Z
R = A(:,:); R(:,1) = []; % Calculate R as an exact copy of A, just without first column
Rs = ctranspose(R); % Calculate R-star (conjugate transpose of R)
alpha = (Rs*R)^(-1)*Rs*Y; % Finally apply multiple linear regression
alpha = cat(1, 1, alpha); % Add alpha1 back, whose value is 1
or, if you prefer built-ins, have a look at regress function:
Y = Z - A(:,1); % Calculate Y subtracting the first col of A from Z
R = A(:,:); R(:,1) = []; % Calculate R as an exact copy of A, just without first column
alpha = regress(Y, R); % Finally apply multiple linear regression
alpha = cat(1, 1, alpha); % Add alpha1 back, whose value is 1
来源:https://stackoverflow.com/questions/48833281/curve-fitting-of-complex-variable-in-matlab