问题
I want to mutate multiple columns containing the string "account". Specifically, I want these columns to take "NA" when a certain condition is met, and another value when the condition is not met. Below I present my attempt inspired on here and here. So far, unsuccessful. Still trying, nevertheless any help would be much appreciated.
My data
df<-as.data.frame(structure(list(low_account = c(1, 1, 0.5, 0.5, 0.5, 0.5), high_account = c(16,
16, 56, 56, 56, 56), mid_account_0 = c(8.5, 8.5, 28.25, 28.25,
28.25, 28.25), mean_account_0 = c(31.174, 30.1922101449275, 30.1922101449275,
33.3055555555556, 31.174, 33.3055555555556), median_account_0 = c(2.1,
3.8, 24.2, 24.2, 24.2, 24.2), low_account.1 = c(1, 1, 0.5, 0.5, 0.5,
0.5), high_account.1 = c(16, 16, 56, 56, 56, 56), row.names = c("A001", "A002", "A003", "A004", "A005", "A006"))))
df
low_account high_account mid_account_0 mean_account_0 median_account_0 low_account.1 high_account.1 row.names
1 1.0 16 8.50 31.17400 2.1 1.0 16 A001
2 1.0 16 8.50 30.19221 3.8 1.0 16 A002
3 0.5 56 28.25 30.19221 24.2 0.5 56 A003
4 0.5 56 28.25 33.30556 24.2 0.5 56 A004
5 0.5 56 28.25 31.17400 24.2 0.5 56 A005
6 0.5 56 28.25 33.30556 24.2 0.5 56 A006
My attempt
sample_data<-df%>% mutate_at(select(contains("account") , ifelse(. <= df$low_account& >= df$high_account, NA, .)))
Error: No tidyselect variables were registered Call
rlang::last_error()
to see a backtrace
Expected output
df
low_account high_account mid_account_0 mean_account_0 median_account_0 low_account.1 high_account.1 row.names
1 1.0 16 8.50 NA 2.1 1.0 16 A001
2 1.0 16 8.50 NA 3.8 1.0 16 A002
3 0.5 56 28.25 30.19221 24.2 0.5 56 A003
4 0.5 56 28.25 33.30556 24.2 0.5 56 A004
5 0.5 56 28.25 31.17400 24.2 0.5 56 A005
6 0.5 56 28.25 33.30556 24.2 0.5 56 A006
回答1:
The issue with the vars(contains('account'))
is that it matches all the columns where the substring 'account' is present and when we do the logical comparison, the 'low_account' column gets converted to NA
because it is definitely lower or equal to 'low_account', thus only that NA replaced column is available. So, instead, we can get the columns of interest 'mid', 'median', 'mean' columns and then do the replace
library(tidyverse)
df %>%
mutate_at(vars(matches("(mid|mean|median)_account")),
~ replace(., .<= low_account | .>= high_account, NA))
# low_account high_account mid_account_0 mean_account_0 median_account_0 low_account.1 high_account.1 row.names
#1 1.0 16 8.50 NA 2.1 1.0 16 A001
#2 1.0 16 8.50 NA 3.8 1.0 16 A002
#3 0.5 56 28.25 30.19221 24.2 0.5 56 A003
#4 0.5 56 28.25 33.30556 24.2 0.5 56 A004
#5 0.5 56 28.25 31.17400 24.2 0.5 56 A005
#6 0.5 56 28.25 33.30556 24.2 0.5 56 A006
来源:https://stackoverflow.com/questions/57043794/how-to-conditionally-mutate-multiple-columns-using-contains-and-ifelse