算法时间复杂度

我是研究僧i 提交于 2019-12-22 18:34:56

原文链接:https://blog.csdn.net/szlg510027010/article/details/82426240

步骤:
1、找到执行次数最多的语句

2、语句执行语句的数量级

3、用O表示结果

计算时间复杂度的3个出发点,掌握这三个出发点,那么一向搞不懂的时间复杂度就可以迎刃而解啦。

然后:

1、用常数1取代运行时间中的所有加法常数

2、在修改后的运行次数函数中,只保留最高阶项

3、如果最高阶项存在且不是1,那么我们就去除于这个项相乘的常数。比如3n^2我们取n^2

最后就可以得到你们想要的结果了。

举几个例子:

我们来看一下这个例子,用的是java,内容就是打印8条语句,问这个程序的时间复杂度是多少?

public class TS {
    public static void main(String[] args) {
        System.out.println("111");
        System.out.println("111");
        System.out.println("111");
        System.out.println("111");
        System.out.println("111");
        System.out.println("111");
        System.out.println("111");
        System.out.println("111");
    }
}
 

O(8)? 当然不是!!!按照时间复杂度的概念“T(n)是关于问题规模为n的函数”,这里跟问题规模有关系吗?没有关系,用我们的第一个方法,时间复杂度为O(1)。

第二个例子:(线性阶)

 
public class TS {
    public static void main(String[] args) {
        int sum = 0;
        for(int i=1;i<=100;i++) {
            sum = sum + i;
        }
    }
}
时间复杂度为O(n)。

第三个例子:(平方阶)

 
public class TS {
    public static void main(String[] args) {
        int sum = 0;
        for(int i=1;i<=100;i++) {
            for(int j=1;j<=100;j++)
                sum = sum + i;
        }
    }
}
 外层i的循环执行一次,内层j的循环就要执行100次,所以外层执行100次,那么总的就需要执行100*100次,那么n次呢?就是n的平方次了。所以时间复杂度为:O(n^2)。

平方阶的另外一个例子:

public class TS {
    public static void main(String[] args) {
        int sum = 0;
        for(int i=1;i<=100;i++) {
            for(int j=i;j<=100;j++)
                sum = sum + i;
        }
    }
}
当i=1的时候执行n次,当n=2的时候执行(n-1)次,......

一直这样子下去就可以构造出一个等差数列:n+(n-1)+(n-2)+......+2+1

根据等差数列的求和公式:或者

求和易得:n+n*(n-1)/2整理一下就是n*(n+1)/2然后我们将其展开可以得到n^2/2+n/2。

根据我们的步骤走,保留最高次项,去掉相乘的常数就可以得到时间复杂度为:O(n^2)

第四个例子:(对数阶)

public class TS {
    public static void main(String[] args) {
        int i=1;
        int n= 100;
        while(i<n) {
            i = i*2;
        }    
}
2^x = n,所以时间复杂度为O(log2n)。

补充常用的时间复杂度所耗费的时间从小到大依次是:

O(1 )< O(logn) < O(n) < O(n*logn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

最坏情况与平均情况:

平均运行时间是期望的运行时间。

最坏的运行时间是一种保证。我们提到的运行时间都是最坏的运行时间。

可以通过空间来换取时间。

常用的排序算法的时间复杂度和空间复杂度

排序法

最差时间分析

平均时间复杂度

稳定度

空间复杂度

冒泡排序

O(n2)

O(n2)

稳定

O(1)

插入排序

O(n2)

O(n2)

稳定

O(1)

选择排序

O(n2)

O(n2)

稳定

O(1)

二叉树排序

O(n2)

O(n*log2n)

不一顶

O(n)

快速排序

O(n2)

O(n*log2n)

不稳定

O(log2n)~O(n)

堆排序

O(n*log2n)

O(n*log2n)

不稳定

O(1)

希尔排序

O(n2)

O(nlogn)-O(n2)

不稳定

O(1)

查找算法时间复杂度

查找

平均时间复杂度

查找条件

算法描述

顺序查找

O(n)

无序或有序队列

按顺序比较每个元素,直到找到关键字为止

二分查找(折半查找)

O(logn)

有序数组

查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。 如果在某一步骤数组为空,则代表找不到。

二叉排序树查找

O(logn)

二叉排序树

在二叉查找树b中查找x的过程为:

1. 若b是空树,则搜索失败

2. 若x等于b的根节点的数据域之值,则查找成功;

3. 若x小于b的根节点的数据域之值,则搜索左子树

4. 查找右子树。

哈希表法(散列表)

O(1)

先创建哈希表(散列表)

根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。

分块查找

O(logn)

无序或有序队列

将n个数据元素"按块有序"划分为m块(m ≤ n)。

每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。然后使用二分查找及顺序查找。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!