问题
This weekend I worked on a Sudoku Solver (Ruby quiz) based on a backtracking algorithm. The sudoku is loaded in an array sudoku_arr
of 81 integers (9x9 grid) where 0's are empty spots. There is a valid?
method which checks if the sudoku_arr
can be a valid sudoku.
The official backtracking algorithm goes like this: try value on next empty spot, check if it is valid sudoku, if not increase value by 1 (upto 9), if valid go on and try first value on next spot, if not increase value of previous 0.
Hereby we have to keep track of the previous array, and that is where I am going wrong and I am not sure if it can be solved. The part of my code below that is not working is the solve_by_increasing_value_previous_index
in the SudokuSolver
class. Here's the code:
require 'pp'
sudoku_str = "
+-------+-------+-------+
| _ 6 _ | 1 _ 4 | _ 5 _ |
| _ _ 8 | 3 _ 5 | 6 _ _ |
| 2 _ _ | _ _ _ | _ _ 1 |
+-------+-------+-------+
| 8 _ _ | 4 _ 7 | _ _ 6 |
| _ _ 6 | _ _ _ | 3 _ _ |
| 7 _ _ | 9 _ 1 | _ _ 4 |
+-------+-------+-------+
| 5 _ _ | _ _ _ | _ _ 2 |
| _ _ 7 | 2 _ 6 | 9 _ _ |
| _ 4 _ | 5 _ 8 | _ 7 _ |
+-------+-------+-------+"
class SudokuException < StandardError
attr_reader :sudoku_arr
def initialize(message, sudoku_arr)
super(message)
@sudoku_arr = sudoku_arr
end
end
class Sudoku
attr_accessor :sudoku_arr,
:index_of_tried_value,
:tried_value
def initialize(sudoku_arr, index_of_tried_value, tried_value)
@sudoku_arr = sudoku_arr
@index_of_tried_value = index_of_tried_value
@tried_value = tried_value
end
def rows_valid?
rows_have_unique_values?(@sudoku_arr)
end
def columns_valid?
rows_have_unique_values?(@sudoku_arr.each_slice(9).to_a.transpose.flatten!)
end
def squares_valid?
tmp_a = @sudoku_arr.each_slice(3).to_a
rows_have_unique_values?(
(tmp_a[0] << tmp_a[3] << tmp_a[6] << tmp_a[1] << tmp_a[4] << tmp_a[7] <<
tmp_a[2] << tmp_a[5] << tmp_a[8] << tmp_a[9] << tmp_a[12] << tmp_a[15] <<
tmp_a[10] << tmp_a[13] << tmp_a[16] << tmp_a[11] << tmp_a[14] << tmp_a[17] <<
tmp_a[18] << tmp_a[21] << tmp_a[24] << tmp_a[19] << tmp_a[22] << tmp_a[25] <<
tmp_a[20] << tmp_a[23] << tmp_a[26]).flatten!)
end
def valid?
rows_valid? && columns_valid? && squares_valid?
end
def rows_have_unique_values?(arr)
(arr[0,9]- [0]).uniq.size == (arr[0,9]- [0]).size &&
(arr[9,9]- [0]).uniq.size == (arr[9,9]- [0]).size &&
(arr[18,9]-[0]).uniq.size == (arr[18,9]-[0]).size &&
(arr[27,9]-[0]).uniq.size == (arr[27,9]-[0]).size &&
(arr[36,9]-[0]).uniq.size == (arr[36,9]-[0]).size &&
(arr[45,9]-[0]).uniq.size == (arr[45,9]-[0]).size &&
(arr[54,9]-[0]).uniq.size == (arr[54,9]-[0]).size &&
(arr[63,9]-[0]).uniq.size == (arr[63,9]-[0]).size &&
(arr[72,9]-[0]).uniq.size == (arr[72,9]-[0]).size
end
end
class SudokuSolver
attr_accessor :sudoku_arr,
:indeces_of_zeroes
def initialize(str)
@sudoku_arr = str.gsub(/[|\+\-\s]/,"").gsub(/_/,'0').split(//).map(&:to_i)
@indeces_of_zeroes = []
@sudoku_arr.each_with_index { |e,index| @indeces_of_zeroes << index if e.zero? }
end
def solve
sudoku_arr = @sudoku_arr
try_index = @indeces_of_zeroes[0]
try_value = 1
sudoku = Sudoku.new(sudoku_arr, try_index, try_value)
solve_by_increasing_value(sudoku)
end
def solve_by_increasing_value(sudoku)
if sudoku.tried_value < 10
sudoku.sudoku_arr[sudoku.index_of_tried_value] = sudoku.tried_value
if sudoku.valid?
pp "increasing_index..."
solve_by_increasing_index(sudoku)
else
pp "increasing_value..."
sudoku.tried_value += 1
solve_by_increasing_value(sudoku)
end
else
pp "Increasing previous index..."
solve_by_increasing_value_previous_index(sudoku)
end
end
def solve_by_increasing_index(sudoku)
if sudoku.sudoku_arr.index(0).nil?
raise SudokuException(sudoku.sudoku_arr.each_slice(9)), "Sudoku is solved."
end
sudoku.index_of_tried_value = sudoku.sudoku_arr.index(0)
sudoku.tried_value = 1
solve_by_increasing_value(sudoku)
end
def solve_by_increasing_value_previous_index(sudoku)
# Find tried index and get the one before it
tried_index = sudoku.index_of_tried_value
previous_index = indeces_of_zeroes[indeces_of_zeroes.index(tried_index)-1]
# Setup previous Sudoku so we can go back further if necessary:
# Set tried index back to zero
sudoku.sudoku_arr[tried_index] = 0
# Set previous index
sudoku.index_of_tried_value = previous_index
# Set previous value at index
sudoku.tried_value = sudoku.sudoku_arr[previous_index]
pp previous_index
pp sudoku.tried_value
# TODO Throw exception if we go too far back (i.e., before first index) since Sudoku is unsolvable
# Continue business as usual by increasing the value of the previous index
solve_by_increasing_value(sudoku)
end
end
sudoku_solver = SudokuSolver.new(sudoku_str)
sudoku_solver.solve
Unfortunately the code does not backtrack to the beginning. The code prints:
"increasing_index..." "increasing_value..." "increasing_value..." "increasing_value..." "increasing_value..." "increasing_value..." "increasing_value..." "increasing_value..." "increasing_value..." "Increasing previous index..." 16 2
in a loop till it throws a SystemStackError
because the stack level is too deep.
What happens is that the "backtracking" does not go further back than one index. When the solve_by_increasing_value_previous_index
goes to the previous index it takes the previous value there. In this case it is a 2, but the 2 is not working and we should therefore decrease it to a 1 and continue, and if that does not work, discard the 2 and make it a 0 again and go back further.
Unfortunately I do not see an easy way to implement this algorithm. (What I thought of was a @too_much_looping
variable that gets incremented when the solve_by_increasing_value_previous_index
gets called, and after 81 times gets a reset. But this only helps with going back one more time, we cannot loop back to the beginning. \
I hope someone can provide me with some help! General code comments are very welcome too, I have a suspicion this is not 100% idiomatic Ruby.
回答1:
I haven't yet waded through your code, but the backtracking algorithm boils down to the following:
int solve(char board[81]) {
int i, c;
if (!is_valid(board)) return 0;
c = first_empty_cell(board);
if (c<0) return 1; /* board is full */
for (i=1; i<=9; i++) {
board[c] = i;
if (solve(board)) return 1;
}
board[c] = 0;
return 0;
}
This is a recursive function that tries each value from 1
to 9
in the first empty cell it finds (returned by first_empty_cell()
). If none of these values leads to a solution, then you must be on a dead branch of the search tree, so the cell in question can be reset to zero (or whatever value you use to indicate an unfilled cell).
Of course, there are a lot of other things you could do to make your software arrive at a solution faster, but as far as backtracking goes, that's all there is to it.
Addendum:
OK, I'm wading through your code now. It looks like you're storing index_of_tried_value
as an attribute of the sudoku grid. That won't work. You need to store this value in a local variable of the solver routine so it can be pushed onto the stack and recovered when you backtrack down the search tree.
回答2:
There is an algo called "Dancing links" invented by knuth, which can be applied in Sudoku. http://en.wikipedia.org/wiki/Dancing_Links
Soduko problem can be solved by exact cover problem. Here is the article http://www-cs-faculty.stanford.edu/~uno/papers/dancing-color.ps.gz
here is my code to solve exact cover problem, it can also solve sudoku and the backtracing part is in dlx()
const int INF = 0x3f3f3f3f;
const int T = 9;
const int N = T*T*T+10;
const int M = T*T*T*4+T*T*4+10;
int id;
int L[M],R[M],U[M],D[M];
int ANS[N],SUM[N],COL[M],ROW[M],H[N];
struct Dancing_links
{
Dancing_links() {}
Dancing_links(int n,int m)
{
for(int i=0; i<=m; i++)
{
SUM[i] = 0;
L[i+1] = D[i] = U[i] = i;
R[i]=i+1;
}
L[m+1]=R[m]=0,L[0]=m,id=m+1;
clr(H,-1);
}
void remove(int c)
{
L[R[c]] = L[c];
R[L[c]] = R[c];
for(int i=D[c]; i!=c; i=D[i])
for(int j=R[i]; j!=i; j=R[j])
{
U[D[j]] = U[j];
D[U[j]] = D[j];
SUM[COL[j]]--;
}
}
void resume(int c)
{
for(int i=U[c]; i!=c; i=U[i])
for(int j=L[i]; j!=i; j=L[j])
{
U[D[j]] = D[U[j]] = j;
SUM[COL[j]]++;
}
L[R[c]] = R[L[c]] = c;
}
void add(int r,int c)
{
ROW[id] = r,COL[id] = c;
SUM[c]++;
D[id] = D[c],U[D[c]] = id,U[id] = c,D[c] = id;
if(H[r] < 0)
H[r] = L[id] = R[id] = id;
else
R[id] = R[H[r]],L[R[H[r]]] = id,L[id] = H[r],R[H[r]] = id;
id++;
}
int dlx(int k)
{
if(R[0] == 0)
{
/*output the answer*/return k;
}
int s=INF,c;
for(int i=R[0]; i; i=R[i])
if(SUM[i] < s)
s=SUM[c=i];
remove(c);
for(int r=D[c]; r!=c; r=D[r])
{
ANS[k] = ROW[r];
for(int j=R[r]; j!=r; j=R[j]) remove(COL[j]);
int tmp = dlx(k+1);
if(tmp != -1) return tmp; //delete if multipal answer is needed
for(int j=L[r]; j!=r; j=L[j]) resume(COL[j]);
}
resume(c);
return -1;
}
};
来源:https://stackoverflow.com/questions/25108258/how-to-make-sudoku-solver-with-backtracking-algorithm-go-back