I am trying to implement the binary search in python and have written it as follows. However, I can't make it stop whenever needle_element is larger than the largest element in the array.
Can you help? Thanks.
def binary_search(array, needle_element):
mid = (len(array)) / 2
if not len(array):
raise "Error"
if needle_element == array[mid]:
return mid
elif needle_element > array[mid]:
return mid + binary_search(array[mid:],needle_element)
elif needle_element < array[mid]:
return binary_search(array[:mid],needle_element)
else:
raise "Error"
In the case that needle_element > array[mid]
, you currently pass array[mid:]
to the recursive call. But you know that array[mid]
is too small, so you can pass array[mid+1:]
instead (and adjust the returned index accordingly).
If the needle is larger than all the elements in the array, doing it this way will eventually give you an empty array, and an error will be raised as expected.
Note: Creating a sub-array each time will result in bad performance for large arrays. It's better to pass in the bounds of the array instead.
It would be much better to work with a lower
and upper
indexes as Lasse V. Karlsen was suggesting in a comment to the question.
This would be the code:
def binary_search(array, target):
lower = 0
upper = len(array)
while lower < upper: # use < instead of <=
x = lower + (upper - lower) // 2
val = array[x]
if target == val:
return x
elif target > val:
if lower == x: # these two are the actual lines
break # you're looking for
lower = x
elif target < val:
upper = x
lower < upper
will stop once you have reached the smaller number (from the left side)if lower == x: break
will stop once you've reached the higher number (from the right side)
Example:
>>> binary_search([1,5,8,10], 5) # return 1
1
>>> binary_search([1,5,8,10], 0) # return None
>>> binary_search([1,5,8,10], 15) # return None
Why not use the bisect module? It should do the job you need---less code for you to maintain and test.
array[mid:] creates a new sub-copy everytime you call it = slow. Also you use recursion, which in Python is slow, too.
Try this:
def binarysearch(sequence, value):
lo, hi = 0, len(sequence) - 1
while lo <= hi:
mid = (lo + hi) // 2
if sequence[mid] < value:
lo = mid + 1
elif value < sequence[mid]:
hi = mid - 1
else:
return mid
return None
You can improve your algorithm as the others suggested, but let's first look at why it doesn't work:
You're getting stuck in a loop because if needle_element > array[mid]
, you're including element mid
in the bisected array you search next. So if needle is not in the array, you'll eventually be searching an array of length one forever. Pass array[mid+1:]
instead (it's legal even if mid+1
is not a valid index), and you'll eventually call your function with an array of length zero. So len(array) == 0
means "not found", not an error. Handle it appropriately.
def binary_search(array, target):
low = 0
mid = len(array) / 2
upper = len(array)
if len(array) == 1:
if array[0] == target:
print target
return array[0]
else:
return False
if target == array[mid]:
print array[mid]
return mid
else:
if mid > low:
arrayl = array[0:mid]
binary_search(arrayl, target)
if upper > mid:
arrayu = array[mid:len(array)]
binary_search(arrayu, target)
if __name__ == "__main__":
a = [3,2,9,8,4,1,9,6,5,9,7]
binary_search(a,9)
If you're doing a binary search, I'm guessing the array is sorted. If that is true you should be able to compare the last element in the array to the needle_element
. As octopus says, this can be done before the search begins.
You can just check to see that needle_element
is in the bounds of the array before starting at all. This will make it more efficient also, since you won't have to do several steps to get to the end.
if needle_element < array[0] or needle_element > array[-1]:
# do something, raise error perhaps?
All the answers above are true , but I think it would help to share my code
def binary_search(number):
numbers_list = range(20, 100)
i = 0
j = len(numbers_list)
while i < j:
middle = int((i + j) / 2)
if number > numbers_list[middle]:
i = middle + 1
else:
j = middle
return 'the index is '+str(i)
It returns the index of key in array by using recursive.
round() is a function convert float to integer and make code fast and goes to expected case[O(logn)].
A=[1,2,3,4,5,6,7,8,9,10]
low = 0
hi = len(A)
v=3
def BS(A,low,hi,v):
mid = round((hi+low)/2.0)
if v == mid:
print ("You have found dude!" + " " + "Index of v is ", A.index(v))
elif v < mid:
print ("Item is smaller than mid")
hi = mid-1
BS(A,low,hi,v)
else :
print ("Item is greater than mid")
low = mid + 1
BS(A,low,hi,v)
BS(A,low,hi,v)
Without the lower/upper indexes this should also do:
def exists_element(element, array):
if not array:
yield False
mid = len(array) // 2
if element == array[mid]:
yield True
elif element < array[mid]:
yield from exists_element(element, array[:mid])
else:
yield from exists_element(element, array[mid + 1:])
This is a tail recursive solution, I think this is cleaner than copying partial arrays and then keeping track of the indexes for returning:
def binarySearch(elem, arr):
# return the index at which elem lies, or return false
# if elem is not found
# pre: array must be sorted
return binarySearchHelper(elem, arr, 0, len(arr) - 1)
def binarySearchHelper(elem, arr, start, end):
if start > end:
return False
mid = (start + end)//2
if arr[mid] == elem:
return mid
elif arr[mid] > elem:
# recurse to the left of mid
return binarySearchHelper(elem, arr, start, mid - 1)
else:
# recurse to the right of mid
return binarySearchHelper(elem, arr, mid + 1, end)
Using Recursion:
def binarySearch(arr,item):
c = len(arr)//2
if item > arr[c]:
ans = binarySearch(arr[c+1:],item)
if ans:
return binarySearch(arr[c+1],item)+c+1
elif item < arr[c]:
return binarySearch(arr[:c],item)
else:
return c
binarySearch([1,5,8,10,20,50,60],10)
Returning a boolean if the value is in the list.
Capture the first and last index of the list, loop and divide the list capturing the mid value. In each loop will do the same, then compare if value input is equal to mid value.
def binarySearch(array, value):
array = sorted(array)
first = 0
last = len(array) - 1
while first <= last:
midIndex = (first + last) // 2
midValue = array[midIndex]
if value == midValue:
return True
if value < midValue:
last = midIndex - 1
if value > midValue:
first = midIndex + 1
return False
来源:https://stackoverflow.com/questions/9501337/binary-search-algorithm-in-python