Upper triangle of cartesian in spark for symmetric operations: `x*(x+1)//2` instead of `x**2`

与世无争的帅哥 提交于 2019-12-22 08:34:38

问题


I need to compute pairwise symmetric scores for items of a list in Spark. I.e. score(x[i],x[j]) = score(x[j], x[i]). One solution is to use x.cartesian(x). However it will perform x**2 operations instead of minimal necessary x*(x+1)//2.

What is the most efficient remeady for this issue in Spark?

PS. In pure Python I would use iterator like:

class uptrsq_range(object):

    def __init__(self, n):

        self._n_ = n
        self._length = n*(n+1) // 2

    def __iter__(self):
        for ii in range(self._n_):
            for jj in range(ii+1):
                yield (ii,jj)

    def __len__(self):
        """
        recepe by sleblanc @ stackoverflow
        """
        "This method returns the total number of elements"
        if self._length:
            return self._length
        else:
            raise NotImplementedError("Infinite sequence has no length")
            # or simply return None / 0 depending
            # on implementation

for i,j in uptrsq_range(len(x)):
    score(x[i], x[j])

回答1:


The most universal approach is to follow cartesian with filter. For example:

rdd = sc.parallelize(range(10))

pairs = rdd.cartesian(rdd).filter(lambda x: x[0] < x[1])
pairs.count()

## 45

If RDD is relatively small you can collect, broadcast and flatMap:

xs = sc.broadcast(rdd.collect())
pairs = rdd.flatMap(lambda y: [(x, y) for x in xs.value if x < y])
pairs.count()

## 45

This is particularly useful if data can be further filtered inside flatMap to reduce number of yielded values.

If data is too large to be collected / stored in memory but can be easily computed (like a range of numbers) or can be efficiently accessed from the worker (locally accessible database) you can flatMap as above or use mapPartitions for example like this:

def some_function(iter):
    import sqlite3
    conn = sqlite3.connect('example.db')
    c = conn.cursor()
    query = ...  

    for x in iter:
        # fetch some data from a database
        c.execute(query, (x, ))
        for y in c.fetchall():
            yield (x, y)

rdd.mapPartitions(some_function)


来源:https://stackoverflow.com/questions/34111965/upper-triangle-of-cartesian-in-spark-for-symmetric-operations-xx1-2-inst

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!