问题
I am confused about the concepts of inheritance and polymorphism. I mean, what is the difference between code re-usability and function overriding? Is it impossible to reuse parent class function using inheritance concept or else is it impossible to override parent class variables using Polymorphism. There seems little difference for me.
class A
{
public:
int a;
virtual void get()
{
cout<<"welcome";
}
};
class B:public A
{
a =a+1; //why it is called code reuse
void get() //why it is called overriding
{
cout<<"hi";
}
};
My doubt is about the difference between the code reuse and function overriding.
回答1:
Lets start with your example.
class A
{
public:
int a;
virtual void get()
{
cout<<"welcome";
}
};
class B:public A
{
a =a+1; //why it is called code reuse
void get() //why it is called overriding
{
cout<<"hi";
}
};
Inheritance: Here you are deriving class B from class A, this means that you can access all of its public variables and method.
a = a + 1
Here you are using variable a
of class A
, you are reusing the variable a
in class B
thereby achieving code reusability.
Polymorphism deals with how a program invokes a method depending on the things it has to perform: in your example you are overriding the method get()
of class A
with method get()
of class B
. So when you create an instance of Class B and call method get you'll get 'hi'
in the console not 'welcome'
回答2:
Function inheritance allows for abstraction of behaviour from a "more concrete" derived class(es) to a "more abstract" base class. (This is analogous to factoring in basic math and algebra.) In this context, more abstract simply means that less details are specified. It is expected that derived classes will extend (or add to) what is specified in the base class. For example:
class CommonBase
{
public:
int getCommonProperty(void) const { return m_commonProperty; }
void setCommonProperty(int value) { m_commonProperty = value; }
private:
int m_commonProperty;
};
class Subtype1 : public CommonBase
{
// Add more specific stuff in addition to inherited stuff here...
public:
char getProperty(void) const { return m_specificProperty1; }
private:
char m_specificProperty1;
};
class Subtype2 : public CommonBase
{
// Add more specific stuff in addition to inherited stuff here...
public:
float getProperty(void) const { return m_specificProperty2; }
private:
float m_specificProperty2;
};
Note that in the above example, getCommonProperty()
and setCommonProperty(int)
are inherited from the CommonBase
class, and can be used in instances of objects of type Subtype1
and Subtype2
. So we have inheritance here, but we don't really have polymorphism yet (as will be explained below).
You may or may not want to instantiate objects of the base class, but you can still use it to collect/specify behaviour (methods) and properties (fields) that all derived classes will inherit. So with respect to code reuse, if you have more than one type of derived class that shares some common behaviour, you can specify that behaviour only once in the base class and then "reuse" that in all derived classes without having to copy it. For example, in the above code, the specifications of getCommmonProperty()
and setCommonProperty(int)
can be said to be reused by each Subtype#
class because the methods do not need to be rewritten for each.
Polymorphism is related, but it implies more. It basically means that you can treat objects that happen to be from different classes the same way because they all happen to be derived from (extend) a common base class. For this to be really useful, the language should support virtual inheritance. That means that the function signatures can be the same across multiple derived classes (i.e., the signature is part of the common, abstract base class), but will do different things depending on specific type of object.
So modifying the above example to add to CommonBase
(but keeping Subtype1
and Subtype2
the same as before):
class CommonBase
{
public:
int getCommonProperty(void) const { return m_commonProperty; }
void setCommonProperty(int value) { m_commonProperty = value; }
virtual void doSomething(void) = 0;
virtual ~CommonBase() { }
private:
int m_commonProperty;
};
Note that doSomething()
is declared here as a pure virtual function in CommonBase
(which means that you can never instantiate a CommonBase
object directly -- it didn't have to be this way, I just did that to keep things simple). But now, if you have a pointer to a CommonBase
object, which can be either a Subtype1
or a Subtype2
, you can call doSomething()
on it. This will do something different depending on the type of the object. This is polymorphism.
void foo(void)
{
CommonBase * pCB = new Subtype1;
pCB->doSomething();
pCB = new Subtype2;
pCB->doSomething(); // Does something different...
}
In terms of the code sample you provided in the question, the reason get()
is called "overriding" is because the behaviour specified in the B::get()
version of the method takes precedence over ("overrides") the behaviour specified in the A::get()
version of the method if you call get()
on an instance of a B
object (even if you do it via an A*
, because the method was declared virtual
in class A
).
Finally, your other comment/question about "code reuse" there doesn't quite work as you specified it (since it's not in a method), but I hope it will be clear if you refer to what I wrote above. When you are inheriting behaviour from a common base class and you only have to write the code for that behaviour once (in the base class) and then all derived classes can use it, then that can be considered a type of "code reuse".
回答3:
You can have parametric polymorphism without inheritance. In C++, this is implemented using templates. Wiki article:
http://en.wikipedia.org/wiki/Polymorphism_%28computer_science%29#Parametric_polymorphism
来源:https://stackoverflow.com/questions/27056215/what-is-the-difference-between-polymorphism-and-inheritance