问题
I am brand new to pyspark
and want to translate my existing pandas
/ python
code to PySpark
.
I want to subset my dataframe
so that only rows that contain specific key words I'm looking for in 'original_problem'
field is returned.
Below is the Python code I tried in PySpark:
def pilot_discrep(input_file):
df = input_file
searchfor = ['cat', 'dog', 'frog', 'fleece']
df = df[df['original_problem'].str.contains('|'.join(searchfor))]
return df
When I try to run the above, I get the following error:
AnalysisException: u"Can't extract value from original_problem#207: need struct type but got string;"
回答1:
In pyspark, try this:
df = df[df['original_problem'].rlike('|'.join(searchfor))]
Or equivalently:
import pyspark.sql.functions as F
df.where(F.col('original_problem').rlike('|'.join(searchfor)))
Alternatively, you could go for udf
:
import pyspark.sql.functions as F
searchfor = ['cat', 'dog', 'frog', 'fleece']
check_udf = F.udf(lambda x: x if x in searchfor else 'Not_present')
df = df.withColumn('check_presence', check_udf(F.col('original_problem')))
df = df.filter(df.check_presence != 'Not_present').drop('check_presence')
But the DataFrame methods are preferred because they will be faster.
来源:https://stackoverflow.com/questions/50414316/pyspark-search-for-substrings-in-text-and-subset-dataframe