How to extract sklearn decision tree rules to pandas boolean conditions?

情到浓时终转凉″ 提交于 2019-12-20 12:32:05

问题


There are so many posts like this about how to extract sklearn decision tree rules but I could not find any about using pandas.

Take this data and model for example, as below

# Create Decision Tree classifer object
clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

The result:

Expected:

There're 8 rules about this example.

From left to right,notice that dataframe is df

r1 = (df['glucose']<=127.5) & (df['bmi']<=26.45) & (df['bmi']<=9.1)
……
r8 =  (df['glucose']>127.5) & (df['bmi']>28.15) & (df['glucose']>158.5)

I'm not a master of extracting sklearn decision tree rules. Getting the pandas boolean conditions will help me calculate samples and other metrics for each rule. So I want to extract each rule to a pandas boolean condition.


回答1:


First of all let's use the scikit documentation on decision tree structure to get information about the tree that was constructed :

n_nodes = clf.tree_.node_count
children_left = clf.tree_.children_left
children_right = clf.tree_.children_right
feature = clf.tree_.feature
threshold = clf.tree_.threshold

We then define two recursive functions. The first one will find the path from the tree's root to create a specific node (all the leaves in our case). The second one will write the specific rules used to create a node using its creation path :

def find_path(node_numb, path, x):
        path.append(node_numb)
        if node_numb == x:
            return True
        left = False
        right = False
        if (children_left[node_numb] !=-1):
            left = find_path(children_left[node_numb], path, x)
        if (children_right[node_numb] !=-1):
            right = find_path(children_right[node_numb], path, x)
        if left or right :
            return True
        path.remove(node_numb)
        return False


def get_rule(path, column_names):
    mask = ''
    for index, node in enumerate(path):
        #We check if we are not in the leaf
        if index!=len(path)-1:
            # Do we go under or over the threshold ?
            if (children_left[node] == path[index+1]):
                mask += "(df['{}']<= {}) \t ".format(column_names[feature[node]], threshold[node])
            else:
                mask += "(df['{}']> {}) \t ".format(column_names[feature[node]], threshold[node])
    # We insert the & at the right places
    mask = mask.replace("\t", "&", mask.count("\t") - 1)
    mask = mask.replace("\t", "")
    return mask

Finally, we use those two functions to first store the path of creation of each leaf. And then to store the rules used to create each leaf :

# Leaves
leave_id = clf.apply(X_test)

paths ={}
for leaf in np.unique(leave_id):
    path_leaf = []
    find_path(0, path_leaf, leaf)
    paths[leaf] = np.unique(np.sort(path_leaf))

rules = {}
for key in paths:
    rules[key] = get_rule(paths[key], pima.columns)

With the data you gave the output is :

rules =
{3: "(df['insulin']<= 127.5) & (df['bp']<= 26.450000762939453) & (df['bp']<= 9.100000381469727)  ",
 4: "(df['insulin']<= 127.5) & (df['bp']<= 26.450000762939453) & (df['bp']> 9.100000381469727)  ",
 6: "(df['insulin']<= 127.5) & (df['bp']> 26.450000762939453) & (df['skin']<= 27.5)  ",
 7: "(df['insulin']<= 127.5) & (df['bp']> 26.450000762939453) & (df['skin']> 27.5)  ",
 10: "(df['insulin']> 127.5) & (df['bp']<= 28.149999618530273) & (df['insulin']<= 145.5)  ",
 11: "(df['insulin']> 127.5) & (df['bp']<= 28.149999618530273) & (df['insulin']> 145.5)  ",
 13: "(df['insulin']> 127.5) & (df['bp']> 28.149999618530273) & (df['insulin']<= 158.5)  ",
 14: "(df['insulin']> 127.5) & (df['bp']> 28.149999618530273) & (df['insulin']> 158.5)  "}

Since the rules are strings, you can't directly call them using df[rules[3]], you have to use the eval function like so df[eval(rules[3])]




回答2:


I figured out a further solution to this problem (a second part to the one posted by vlemaistre) which allows the user to run through any node and subset the data based on the pandas boolean condition.

node_id = 3

def datatree_path_summarystats(node_id):
    for k, v in paths.items():
        if node_id in v:
            d = k,v

    ruleskey = d[0]
    numberofsteps = sum(map(lambda x : x<node_id, d[1]))

    for k, v in rules.items():
        if k == ruleskey:
            b = k,v

    stringsubset = b[1]

    datasubset = "&".join(stringsubset.split('&')[:numberofsteps])
    return datasubset

datasubset = datatree_path_summarystats(node_id)

df[eval(datasubset)]

This function runs through the paths that contain the node id you are looking for. It will then split the rule based on that number of nodes creating the logic to subset the dataframe based on that one specific node.



来源:https://stackoverflow.com/questions/56334210/how-to-extract-sklearn-decision-tree-rules-to-pandas-boolean-conditions

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!